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Course ll

Course Name: Partial Differential Equations (PDE) Course Code: BAMAT-202

Course
Objectives:

The main objectives of this course are to introduce the students to the
exciting world of partial Differential Equations and their applications.

Unit 1:

Definition of partial differential equations, order and degree of partial
differential equations, Lagrange solution of linear partial differential equations
of first order, working rule to find the solution of Lagrange equation Non
linear PDE of first order: Charpit’s method

Unit 2:

Linear partial differential equation of second and higher order of homogeneous
and non homogeneous forms with constant coefficients, solution of a liner
partial differential equations with constant coefficients, Determination of
C.F. and the P.I

Unit 3:

partial differential equation of second order, Second order PDE with
variable coefficients. Canonical Forms, Monge’s method. Monge’s method
of integrating.

Unit 4:

Solution of heat and wave equations in one dimensions by method of
separation of variables. Solution of heat and wave equations in two
dimensions by method of separation of variables.

Course Learning Outcomes: The course will enable the students to:

1. Formulate Partial Differential Equations for various Mathematical models.

2. Will be able to solve partial differential equation of first and higher order using
various techniques.

3. Apply these techniques to solve and analyze various mathematical models.

References:

1. Edwards, C. Henry, Penney, David E., & Calvis, David T. (2015). Differential Equation and
Boundary Value Problems: Computing and Modeling (5th ed.). Pearson Education.
2. Ross, Shepley L. (2004). Differential Equations (3rd ed.). John Wiley & Sons. India
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UNIT I il D

1. PARTIAL DIFFERENTIAL NOTES
EQUATIONS

STRUCTURE

Introduction

Definition of a Partial Differential Equation

Order of a Partial Differential Equation

Linear Partial Differential Equation

Notation

Formation of a Partial Differential Equation

Formation of a Partial Differential Equation by Elimination of Arbitrary
Constants

Formation of a Partial Differential Equation by Elimination of Arbitrary
Functions

INTRODUCTION

Partial differential equations arise in applied mathematics and mathematical
physics when the functions involved depend on two or more independent variables.
The use of partial differential equation is enormous as compared to that of ordinary
differential equations. In the present chapter, we shall learn the method of solving
various types of partial differential equations.

DEFINITION OF A PARTIAL DIFFERENTIAL EQUATION

An equation containing one or more partial derivatives of an unknown function
of two or more independent variables is called a partial differential equation.

The following are some of the examples of partial differential equations :

o )
1-g—i+3%=5z+tan(y—3x) 2. xz§+yz§=xy
2
0z 0z 0z 0z 0z
3. (2 +2%) ——xy—=- 4. x P13y P ool -2 | &
(y“+z )ax xyay xz xax+ yay (z x (ayJ]
9%z 9%z 0%z g 022 5 022 0z 0z
52— -3—-2—=0 6.x — -y " ——-y—+x—=0.
ox” oxdy  dy® w2 7 oy> Y dy  ox

Self-Instructional Material 1



Partial Differential

Equations (PDE) ORDER OF A PARTIAL DIFFERENTIAL EQUATION

The order of a partial differential equation is defined as the order of the highest
NOTES partial derivative occurring in the partial differential equation. For the partial
differential equations (1-6) given above, the order of the first four equations are one
each and the order of the last two equations are two each.

LINEAR PARTIAL DIFFERENTIAL EQUATION

A partial differential equation is said to be linear if the dependent variable and
its partial derivatives occur only in the first degree and are not multiplied together. A
partial differential equation which is not linear is called non-linear. Out of partial
differential equations (1-6) given above the first, fifth and sixth equations are linear
and others are non-linear.

The partial differential equation z g_z + 5y =7 is not a linear partial differential
X

equation because the dependent variable z and its partial derivative g_z are multiplied
X
together.

NOTATION

If z = f(x, y) be a function of two independent variables x and y, then we shall use
the following notation :
0z 0z 8_22 B 0%z 0%z

w P g_q’ axz_r’ axay:s’ ay>

FORMATION OF A PARTIAL DIFFERENTIAL EQUATION

There are two ways of forming partial differential equations depending on the
given relation between variables. A relation between variables may contain arbitrary
constants and arbitrary functions. The elimination of arbitrary constants (or functions)
give rise to a partial differential equation.

FORMATION OF A PARTIAL DIFFERENTIAL EQUATION
BY ELIMINATION OF ARBITRARY CONSTANTS

Let z be a function of two independent variables x and y defined by
fix,y,2,a,b)=0, ¢

where a and b are arbitrary constants.

2 Self-Instructional Material



Differentiating (1) partially w.r.t. x and y, we get
i+i%=0 and o I 0=

—+——=0
ox 0z ox dy 0z dy
of of
= - /=0 .2
ox TP 0z ©)
and %+q%20 ..(3)
oy 0z

In general, @ and b may be eliminated from (1), (2), (3) and we get an equation of
the form g(x, y, 2z, p, @) =0.

This is the required partial differential equation. The order of this equation
shall be one.

Remark 1. If the number of arbitrary constants is less than the number of independent
variables, then the elimination of arbitrary constants shall usually give rise to more than one
differential equation of order one. For example, if z=Ax+ y, then we have differential equations

p:z—y andg=1
x

2. If the number of arbitrary constants is greater than the number of independent
variables, then the elimination of arbitrary constants shall give rise to a partial differential
equation of order usually greater than one.

SOLVED EXAMPLES

Example 1. Form partial differential equations by eliminating arbitrary
constants from the following relations :

@W)z=(x+a)y+b) @) z =ax® +by? + ab

@) z=(x*+a)y2+b) @v) z = aet sin by.
Sol. (1) We have z=(@+a)(y+b) (D)
= z=xy+ay+bx+ab

Differentiating z partially w.r.t. x and y, we get

a—z =y(1)+0+b(1)+0 ..(2)
ox
and % =x()+a(l)+0+0 ..(3)
®» = R A

Putting the values of @ and b in (1), we get

z:(“a_z_x] (y+%_y) or z:a—z.a—z

dy ox ox dy

(11) We have z=ax?+ by? + ab. (D
Differentiating (1) partially w.r.t. x and y, we get

3
% o+ 0+0 @  and Z=0+2y+0 .3
ox oy
2) = p=2ax = a,:L B) = q=2by = bzi‘
2x 2y

Partial Differential
Equations

NOTES

Self-Instructional Material
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Partial Differential Putting the values of @ and b in (1), we get

Equations (PDE)
z:ixz_{_iyz_{_ AJi or z:&.’_ﬂ.’_ﬂ
2x 2y 2x )\ 2y 2 2 A4xy
NOTES
or 4xyz = 2px2?y + 2qxy? + pq.
(111) We have z= 2+ a)(y? + b). (D
Differentiating (1) partially w.r.t. x and y, we get
0z
E (2420 L@ and 5 =@ aN2y+0)
..(3)
_ 2 2o, - P
) = p =2x(y*+ b) = y+b—g
6] = q = 2y(x*+ a) = 3524-(,,:i
2y
Putting the values of 2 + b and x? + @ in (1), we get
z =%% or pq =4xyz.
(iv) We have z = ae® sin by. ..(D
Differentiating (1) partially w.r.t. x and y, we get
a—zz(a sin by).be®™ )
0x
0z bx
and —=(ae™).b cosby .3
%y
2 = p = abe® sin by ..(D
B3 = q = abe® cos by ...(B)
T 14
Dividing (4) by (5), we get ; = tan by.
_ _p
Also, 4 = p=bz = b—;‘
£:tan(ﬁ)y or p:qtanﬂ»
q z z
Example 2. Find a partial differential equation by eliminating a, b and c from
2 2 2
x—2 + y—2 + 2—2 = 1.
a b c
2 2 2
x oyt 2t
Sol. We have a_2+b_2+c_2_1‘ (1)
Differentiating (1) partially w.r.t. x and y, we get
2x 2z dz 9 9 0z
a—2+0+c—2$:0 or c’x+a zgzo (2
and 0+2_32/+2_§8_220 or c2y+bzza—z:O ..(3)
b c” dy dy

4  Self-Instructional Material



Differentiating (2) partially w.r.t. ¥, we get
2 2
0+a?|s 02 B\ o , 02 0202 ¢
dyox dy ox Jdydx 0x dy

Example 3. Find the partial differential equation of all planes which are at a
constant distance ‘a’ from the origin.

Sol. Let Ix+my+nz=a (D)
be the equation of a plane where [, m, n are d.c.’s of the normal to the plane.

Differentiating (1) partially w.r.t. x and y, we get

l(1)+0+na—z =0 .2 and 0+m(1)+na—z =0 ..(3)
ox oy
(2) = L+np=0 or l=—np
3) = m+ng=0 or m=-nq
Also P+m?+n?=1

np)+(=ng+n2=1

1
or P*+@+hni=1 or n=—m—
\Ip2+q2+1
KX l:—np:—#, m:—nq:—#
p2+q2+1 \lp2+q2+1

Putting the values of I, m and n in (1), we get

(Assuming n > 0)

_ px _ qy " z
\/p2+q2+1 \/p2+q2+1 x/p2+q2+1

or z:px+qy+a\/p2+q2+1.

Example 4. Find the differential equation of the family of spheres of radius 7
with centres on the plane x —y = 0.

=a

Sol. Let (a, a, b) be any point on the plane x —y = 0.
With centre at (a, a, b), the equation of the sphere of radius 7 is
x—a)y+ @y —a)?+(z-b2=49 LD
(1) represents a family of spheres where a and b are arbitrary constants.

Differentiating (1) partially w.r.t. x and y, we get

20—a)+0+2z-b)p=0 ..(2)
and 0+2y—a)+2(z—-b)qg=0 ..(3)
2) = x—a=—(-bp and B) = y—-a=—-(-bxq
(1) = -bp*+E-beg*+(z-b*=49
= @*+¢*+ 1) (z-b?*=49 .4
@-() =  2-y)=-26-b@ @ = z-b=-"—2

2
4 = (P*+q¢*+1) (uJ =49
pP-q
or (p?+q®+1)(x-y)?=49(p - q)°

Self-Instructional Material
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Partial Differential Example 5. Show that the differential equation of all cones which have their

Equations (PDE) vertex at the origin is px +qy =z.
Sol. The equation of the family of cones is the homogeneous equation
ax? + by? + cz2 + 2fyz + 2gzx + 2hxy =0 (1)
NOTES .
where a, b, ¢, f, g, h are arbitrary constants.
Differentiating (1) partially w.r.t. x and y, we get
2ax + 0+ 2czp + 2fyp + 2g(z.1 + xp) + 2hy =0 ..(2)
and 0+ 2by + 2czq + 2f(yq + z.1) + 2gxq + 2hx =0 ..(3)
(2) = ax+gz+hy +plcz+fy +gx)=0 ..(4)
3) = by+fz+hx+qcz+fy +gx)=0 ...(D)
Multiplying (4) by x and (5) by y and adding, we get
ax?+ gxz+ hxy + by + fyz+ hxy + (px+qy) (cz+ fy +gx) =0
or ax?+ by? + fyz+ gzx + 2hxy + (px + qy) (cz+ fy + gx) =0
Using (1), we get.  —(c2® + fyz + gzx) + (px + qy) (cz + fy + gx) = 0
= (cz+fy+tgy)(—z+px+tqy)=0 = px+qy=cz.
WORKING RULES FOR SOLVING PROBLEMS

Rule I. For a given relation involving variables and arbitrary constants, the
relation is differentiated partially w.r.t. independent variables and
arbitrary constants are eliminated to get the corresponding partial
differential equation.

Rule II. If the number of arbitrary constants is less than the number of
independent variables, then the elimination of arbitrary constants shall
usually give rise to more than one differential equation of order one.

Rule III. If the number of arbitrary constants is equal to the number of
independent variables, then the elimination of arbitrary constants shall
give rise to one differential equation of order one.

Rule IV. If the number of arbitrary constants is greater than the number of
independent variables, then the elimination of arbitrary constants shall
give rise to a differential equation of order usually greater than one.

z=xy

6  Self-Instructional Material

EXERCISE A

1. az+b=a’x+y 2.z=ax+(1—-a)y+b
3. z=ax+by+ab 4.z=ax+a%y?+b
2 2
1
5. 2z=x_+y_ 6. z=axe’ +—aZ%? +b
a® b 2

+yyxZ-a® +b 8. ax?+by*+cz?=1

z=ax?+ bxy + cy? 10. z=ax + by + cxy.
11. Form a partial differential equation by eliminating @ and b from the equation

(x—a)+ (y—b2+22=L%

12. Find the partial differential equation of planes having equal x and y intercepts.

Form partial differential equations by eliminating arbitrary constants from the
following relations (Q. no. 1-10) :



13. Find the differential equation of all spheres of fixed radius and having their Partial Differential

centres in the xy-plane. Equations
14. Find the differential equation of all spheres whose centre lies on z-axis.
Answers N—
oz oz oz 0z oz oz 0z oz
. 2. %24 2. Z4+% 3. z=x 2 4y B % Z
ox dy ox  dy dx T dy ox dy
2 2
4. a—z=2y(a—2) 5. 2z—xa—z+ya—z ﬁ.a—zzxa_z+ %z
dy ox ox oy dy ox \ox
2
7. a_za_zzxa_z+ya_z 8. % az+z azzo 9.xa—z+ya—z=2z
ox dy | ox dy ox dy  oxdy ox dy
2
0% 9% oz oz 0% 2 (az )2 [az ] 2
10. — £ =0,—=0,z=x—+y—— 11. 2% || —| +|=—| +1|=k
ax? ay? TR dy w 0xdy ox dy
2 2
12, Z_%_g 13. 2° (%) N A Y 142y % g
ox dy ox ay oy ox

FORMATION OF A PARTIAL DIFFERENTIAL EQUATION
BY ELIMINATION OF ARBITRARY FUNCTIONS

Let u and v be independent functions of three variables x, vy, z and let

flu, v) =0 ..(D)
be an arbitrary relation between u and v. Regarding z as a function of x, y and
differentiating (1) partially w.r.t. x, we get

o (au a_u azj af(av v azj

dul\dx 0z ox) ovlox 0z ox
of u of Jv
— — — 0
- au(ax”’azj au(ax”’az)
of /of v ov ou ou
== = — /| = - (2
- ou/ v (aerpazj/(aerpazj @
Similarly, differentiating (1) partially w.r.t. v, we get
o Jof _ (v ov)/[fou, ou NG
ou/ dv oy 0z oy 0z

Eliminating f using (2) and (3), we get
( ) GUJ (au auJ ) v ou ou
| —=+p—|/|=—+p —+q || = +q—
ox 0z ox az oy 0z oy 0z
O OO LA W [T
ox 0z )\ dy i 0z oy 1 0z )\ ox P 0z

(Jedo uin), (i dedo), dupo i

dy dz 0z dy 0z dx Ox 0z i ox dy dy ox
= Pp +Qq =R,
where ~ poOw O _wdv o Oudv dudv 4 p_dwdv Oudv
dy 0z 0z dy 0z dx Ox 0z Oox dy dy ox

This is the required partial differential equation. The order of this equation is one.
Remark. The functions 1 and v are said to be independent if u/vis not merely a constant.
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(iii) f + %, 2z —xy) =0

SOLVED EXAMPLES

Example 6. Form partial differential equations by eliminating arbitrary function
from the following relations :

(i) z = (" + 2%)

Sol. 1) We have z= f(x? + 2y?).
Differentiating (1) partially w.r.t. x and y, we get

Differentiating (2) partially w.r.t. x, we get
P f (10 e

du dox Jdv\odx 0z ox
= a—f.2x+a—f(—y+1.p):0
ou v
= Zxa—f+(p—y)a—f=0
u v

Differentiating (2) partially w.r.t. ¥, we get
Yo Y (o e

ou dy odvldy 0z dy
= i.2y+%(—x+1.q)=0
ou ov

@) f(x> +y?+2%) =ax + by +cz
) f(x® +y2 + 22, 22 - 2xy) = 0.

a_z:p:f’(xz+2y2)i(x2+2y2):2xf/(x2+2y2)
ox ox
dz "2 2, 0 o 2 ro2 2
—=q=f"(x"+2y°) —(x"+2y°) =4y f'(x" + 2y7)
oy oy
. p X
Dividing we get —=— or 2py —qx=0.
q 2y
(11) We have f(x%+y?2+ 29 =ax + by +cz.
Differentiating (1) partially w.r.t. x and y, we get
Flx?+y2+2%). 2x+0+22'a—z =a.1+0+ca—z
ox ox
o2 o2 2 0z 0z
f(x“+y°+29).|0+2y+22 — |=0+b.1+c—
%y %y
2 = 2f'(x2+y2+2%) . (x+p2)=a+cp
3) = 2f'(x%2 +y2 +2%) . (y+qz)=b+cq
Dividing (4) by (5), we get
Xtpz_axrcep or (x+ pz)(b+cq)=(y+qz)(a+cp)
y+qz b+cq
bx +cxq +bpz + czpq =ay +cyp +aqz + czpq
(bz - cy)p + (cx — az)q = ay — bx.
(111) We have [+ y2% z—xy) =0.
Let u=x+y> and v=z-uxy.
@1 = fw, v)=0

(D)

(1)

(2

. (3)

e
..(5)

(D

NP

. (3)



Partial Differential
= 2y §—£+(q —x)g—];:() ..(4) Equations
9 o]
Eliminating a—fand of from (3) and (4), we get rPTY 0
ou ov 2y g-«x NOTES
= 2v(q—x) -2y —y) =0 or xq-yp=xZ-y>
(v) We have f(x?+ y2 + 22, 22 — 2xy) = 0. (D
Let u=x+y2+2z2 and v=2%-2xy.
1 = fw, v)=0 (2
Differentiating (1) partially w.r.t. x, we get
Jf (du |, du of (dv  dv
— —|—+—p|=0
ou (ax 0z p)+ ov (ax " 0z p)
= a—f(2x+2zp)+a—f(—Zy—i-Zzp)zo
ou ov
) 9
= (x +zp)—f+(zp—y)—f:O ..(3)
ou ov
Differentiating (1) partially w.r.t. ¥, we get
of (du  du of (dv  dv
ou Xagl=0
ou (ay oz qJ ov (ay oz qJ
f of
(2y+2zq)+ ( 2x +22q)=0
= (y+zq)—f+(zq—x)—f=0 ..(4)
ou ov
Eliminating iand I from (3) and (4), we get ¥ oY 0.
ou ov y+z2q zq-x

= (x+2z2p)(zq—%) - +tz9kp -y =

=  xzq — &%+ 2%pq —xzp —yazp +y* —2°pq + y2q =0

= @+ -+ =y"-x* = z(p-q=y-x

Example 7. Form partial differential equations by eliminating arbitrary
functions from the following relations :

(@) 2 = x0@) + yy(x) (i) z=f(x* ~y) +g(x* +y)
@ii) x = f(z) +8(y) () z =fly +ax) +g(y +bx), a#b.
Sol. 1) We have z =xd(y) + yy(x). (D)
Differentiating (1) partially w.r.t. x and y, we get
0z ,
gz =¢(y).1+yy’(x) ...(2) and @=x¢ W+y).1 (3
Differentiating (2) w.r.t. y, we get
0%z
=0(y)+vy'(x).1
Lo UG . (4)
g . x b x d
*Why this step. [f ax+ by=0and cx+dy =0, then —=—— gnd —=-—.
Yy a Yy ¢
b d a b
Eliminating x, y, we get ——=—— orad —bc=0 or =0.
a c c d

Self-Instructional Material 9
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0%z 1( oz 1(0z ) .
. o 7(@‘“’”]*;(&‘“”) (Using @) and (3)

0%z 0z 0z

= xy Syox =xo oty EY (xd(y) + yw(x)
= Xy o’z :x£+y£—z‘
Jdyox ox oy
(@1) We have z=f(x?—y) + g(x2 + y). (D
Differentiating partially w.r.t. x and y, we get
P=f'(x2—y)i(x2—y)+g’(x2+y)i(x2+y) (2
ox ox
q=Fa? =) 2~ y) 4 g 43 4 y) e
oy oy
2 = p=2xf(x*—y) + 20 g’ (x* +y) ..(4)
B = q=—f@-y+1.8&*+y) ..(5)
Differentiating (4) w.r.t. x, we get
r=2xf"(x2-y) . 26+ 2.1 f(x*—y)+2x8"(x? +y) . 2x + 2.1 g’ (x* + y)
r=A (T —y) + g7+ ) + 2 (' —y) + g (F + ) ..(6)
Differentiating (5) w.r.t. y, we get
t=—f"(?-y). D) +g"(x*+y) .1
or t=1"(*—y) + g (% +y) (1)
© = r=4x%+2 (%} (Using (4) and (7))
2 2
= ;)T: = 4x3 jy—: g—; .
(1) We have  x = f(2) + g(y). (1)
Differentiating (1) partially w.r.t. x and y, we get
1=f'zp+0 .2 and O0=f'(& q+gW) ..(3)
Differentiating (2) and (3) w.r.t. x, we get
0=f"@p.p+tf@r .4 and 0=f"@p.q+f'@s+0 ..(B)
@ = [@p*=-'@r
) = [@pra=-f'®@s
Dividing, we get gzg or ps—qr=0.
@@Iv) We have z=f(y + ax) + g(y + bx). (D)
Differentiating (1) partially w.r.t. x and y, we get
p=f'iy+tax).a+g'(y+bx).b ..(2)
q=f'(y+ax). 1+g(y+bx).1 ..(3)
Differentiating (2) partially w.r.t. x and y, we get
r=["(y+ax) a®>+ g”(y + bx) b? .4
s=f"y+ax)a.1+g’(y+bx)b.1 ..(5)



Differentiating (3) w.r.t. y, we get Partial Differential

t=f"(y+ax). 1+g(y+by). 1 ..(6) Equations
4 = af’'y+ax)+b2g"(y+bx)—r=0
5) = af’ytax)+bg’(y+bx)—s=0 NOTES
(6) = [y +ax)+g"(y+bx)—t=0
Eliminating f”(y + ax) and g”(y + bx) from these three equations, we get
a? b2 r
a b s|=0
1 1 ¢
= @-br—@—-bds+@b—ab?)t=0
= r— (a+b)s+abt=0.

Example 8. The equation of any cone with vertex at P(x,, y,, z,) is of the form
Fl1E"Fo Y7o iy,
2—2 2—2

Sol. We have f[_u]o D
z—2z) z-2,

Find the differential equation.

Let u:m and U:u.
z—-2p z-2
1) = fu,v)=0 ..(2)

Differentiating (2) partially w.r.t. x, we get
O [1-0  x-x 02| Ooff_ y-yo 02|
oulz-zy (z- zo)2 ox | dv| (z- zo) ax

a_f 1 _p X =X +a_f Y=Y
= dulz-z, (z-29)?) v (Z 20)2

Differentiating (2) partially w.r.t. ¥, we get

a_f_x—x0%+a_f 1-0  y-Y -0
ou (z—zo)2 dy ] dvlz—-2zy (z2- zo) ay

=0 .3

of X — X9 of 1 Y —Yo
= S/ R R - =0 ()
au( q(z—zo)zj av(z—zo (z 20)2
Eliminating I and I from (3) and (4), we get
ou ov
1 _ X —Xo _ Y —Yo
Z-2p (z—20)* (z -2z¢)? _
o x-Xxg 1 g Y=Y
(2 —20)? z2-2 (z-2p)*
. z-zg—-px-xg) —p(y=0) |_
—qx—-x9) z-2z9-q(y—yg)
= [2—2g = p(x—xo)l [2 =29 — q (¥ = ¥o)] = Pg (x = x¢) (y = y9) =0
= (2—20)2—p(x—xo)(z—zo)—(z—zo)q(y—yo)zo
= px-x) tq(y-yy)=z-z,

Self-Instructional Material 11



Partial Differential

Equations (PDE)
Rule I. For a given relation involving variables and arbitrary functions, the
relation is differentiated partially w.r.t. independent variables and
NOTES arbitrary functions are eliminated to get the corresponding partial
differential equation.
Rule II. If the number of arbitrary functions is less than the number of

Rule III. If the number of arbitrary functions is equal to the number of

WORKING RULES FOR SOLVING PROBLEMS

independent variables, then the elimination of arbitrary functions shall
give rise to a differential equation of order one.

independent variables, then the elimination of arbitrary functions shall
give rise to a differential equation of order usually greater than one.

12 Self-Instructional Material

1
3.
5.
7
9

11.
13.

S

11.

13.

12.

EXERCISE B

Find partial differential equation by eliminating arbitrary functions from the fol-
lowing relations :

z=flx+ ky) 2. z = f(x* - y%)
fot+y*+ 2 =x+y+z 4. z=x+y+ flxy)
z=xy+ f(x* +y?) 6. z = f(xy/z)
fx+y+2z)=xyz 8.z=(x+y) f(x¥—y?
z=f(x) + ¢ g(x) 10. z = flxy) + gx + y)

2 = fxy) + g(xly) 12. flx+y+2z 2+ y?—29) =0

z=f(xcos o+ ysin o —at) + g(x cos oL+ y sin o + at).

Answers
q=rhp 2.yp +txq=0 3. -2 pt(E-x)g=x-y
px—qy=x—-y  B.py—qx=y*—-x* 6.px-qy=0
x(y —2)p +y(z-x)q=z(x-y) 8.yptxqg==z

t-q=0 10. x(y —0) r= (* —xH) s+ y(y -0t + (p—q) (x+y) =0
X2r—y%t+axp—yqg=0 12. py+2)—(x+2)g=x—-y
0% 9%z 1 %

—t— = -
o2 oy? o or®

Hint
u=x+y+zv=x>+y>-22 = fu,v)=0
Diff. w.r.t. x, we get a_f[a_qu a—u%J +a—f[i +Q%J =0
ou\ox 0z dx) OJv\dx 0z ox

= i(1+1.p)+i(2x—22p)=0

ou ov
Similarly, ox 1+1.9)+ F 2y —22q)=0

ou ov

e of of 1+p 2x-2zp|_

Eliminating FoEw we get ‘ 1+q 2y-20q|"




2. PARTIAL DIFFERENTIAL

EQUATIONS OF THE FIRST ORDER
(Equations Linear in p and q)

STRUCTURE

Introduction

Solution of a Partial Differential Equation
Complete Solution

Particular Solution

Singular Solution

General Solution

Lagrange Linear Equation

Solution of Lagrange Linear Equation

INTRODUCTION

In the last chapter, we studied the methods of forming partial differential equations.
The next step is to solve partial differential equations. Solving a partial differential
equation means to find a function which satisfies the given partial differential equation.
A function satisfying a partial differential equation is called its solution (or integral).
In the present chapter, we shall confine ourselves to the solution of partial differential
equations of first order and at the same time linear in p and q.

SOLUTION OF A PARTIAL DIFFERENTIAL EQUATION

A solution of a partial differential equation is a relation between the variables by
means of which the partial derivatives are derived there from the given partial
differential equation is satisfied.

A solution of a partial differential equation is also called an integral of the
equation.

In the context of partial differential equations of first order, there are four types
of solutions. These are :

(1) Complete solution @it) Particular solution
(i) Singular solution (tv) General solution.

Partial Differential
Equations of
the First Order

NOTES

Self-Instructional Material
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Partial Differential

Equations (PDE) COMPLETE SOLUT|ON

Let z be a function of two independent variables x and y defined by
NOTES flx,y,z,a,b)=0 (D)
where a and b are arbitrary constants.
Differentiating (1) partially w.r.t. x and y, we get
of _of of  of
2 2L -0 .2 and L +g—=0 ..(3)
ox P oz ® o 1o (

Eliminating a and b from (1), (2) and (3), we get an equation of the form
g(x, y, 2, p, @) =0. This is a partial differential equation of first order.

In (1), the number of arbitrary constants is two which is equal to the number of
independent variables in g(x, v, z, p, q) = 0.

The function f(x, ¥, z, a, b) = 0 is called the complete solution of the
equation g(x, y, 2, p, q) = 0.
For example z = (x + a)(y + b) is a complete solution of the equation pq = z.

PARTICULAR SOLUTION

A solution obtained by giving some particular values to the arbitrary constants in the
complete solution of a partial differential equation of first order is called a particular
solution of the concerned equation.

For example z = (x + 1)(y + 4) is a particular solution of the equation pq = z.

SINGULAR SOLUTION

Let f(x, v, z, a, b) =0 be the complete solution of a partial differential equation

g, v,z p, @ =0. The relation between x, y and z obtained by eliminating the arbitrary
9 ) )

constants a and b between the equations f(x, y,2,a,b) =0, % =0, % =0 is called the
singular solution of the equation g(x, y, z, p, @) =0, provided it satisfies this equation.
This solution represents the envelope of the surfaces represented by the complete
solution of the given partial differential equation. The singular solution may or may
not be contained in the complete solution of the equation.

For example, z = ax + by — (a? + b?) is the complete solution of the partial
differential equation z = px + qy — (p? + ¢?).
Let fx, v, 2, a, b) =z —ax — by + a? + b2

%z—x+2a, %:—y+26

Eliminating a and b from the equations,
xZ +y?

z—ax—by+a?+0?=0, —x+2a=0, —-y+2b=0,weget z= 1

This also satisfy the given equation.

2 2
X" +
z:—y

is the singular solution of the equation z = px + qy — (p? + ¢?).
4

14 Self-Instructional Material



GENERAL SOLUTION

Let f(x, y, 2, a, b)=0 be the complete solution of a partial differential
equation g(x, v, z, p, @) = 0. Let b = ¢(a).

f(x, y, z, a, d(a)) = 0 is a one-parameter family of the surfaces of g(x, y, z, p, q)

= 0. The relation between x, y and z obtained by eliminating the arbitrary constant a

between the equations f(x,y,z a,¢(a)=0 and g—f:O is called the general
a

solution of the equation g(x, y, 2, p, Q) = 0, provided it satisfies this equation. This
solution represents the envelope of the surfaces represented by the equation

ftx, v, 2 a, o(@) = 0.
If b = ¢(a), where ¢ is an arbitrary function, then the elimination of a between

the equations f(x,y,z,a,d(a)) =0,and g—f =0 is not possible. Thus the general solution
a

of the equation g(x, v, z, p, q0 = 0 is written as the set of equations
fx,y,2z,a,0a)) = 0,§_f =0, where ¢ is any arbitrary function.
a

We know that if u and v be independent functions of x, y, z and

flu,v) =0 ..(D)
be an arbitrary function of u and v, then Pp +Qq=R .. (2)
du dv  Jdu dv du dv du Jdv du dv Jdu Jdv
where " way Yea we Naay oo

(2) is a partial differential equation of first order.

Thus f(u, v) = 0 is a solution of the equation Pp + Qq = R. Since f(u, v) =0
contains an arbitrary function ‘f’, it is the general solution of the equation (2).

LAGRANGE LINEAR EQUATION

We know that a partial differential equation of first order involves only the first
order partial derivatives of the dependent variable (z) w.r.t. the independent variables
(x and y). Thus an equation of first order involves x, vy, z, p, ¢ and may also involve
powers of partial derivatives p and q.

In particular, a partial differential equation of first order and at the same time
linear in p and q is of the form Pp + Qq = R where P, Q, R are functions of x, y, z. This
type of a partial differential equation is called a Lagrange linear equation.

For example 4xp + 6y%q = x2 + y2 + 22 is a Lagrange linear equation.

SOLUTION OF LAGRANGE LINEAR EQUATION

Let Pp+Qq=R (1)

be a Lagrange linear equation where P, Q, R are functions of the dependent variable z
and independent variables x and y. The system of equations
dx dy dz
el o (2
P Q@ R
is called the Lagrange system of ordinary differential equations for the equation (1).

Partial Differential
Equations of
the First Order

NOTES

Self-Instructional Material
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Partial Differential
Equations (PDE)

NOTES
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equations — =—=

Letu=C,and v =
Let f(u, v) = 0, be an arbitrary function of 1 and v.
Differentiating (3) partially w.r.t. x and y, we get

of (du a_u of (dv a_v B
au(ax azp) av(ax azp)_o

af(au auJ af(av v 0

ou \ dy 9z i ov \ dy 0z 7)=
o of of 0x 0z ox 0z | _
Eliminating 2~ gnd --, we get =0
8 u an aU g a_u + au aU + a_v

oy qg @ qaz

(a_u+ au) ., %_(a_h %) o
= w Paloy T%) o Pu) oy Yo

B ) (i gud), dud ik
2oy oyoz)P \owaz zox)? oxay oy ox
B M), (edo i), dud dud
oz o)l \ozax xaz)? axay oy ox
(3) is a solution of the equation (4).
Taking differentials of u = C; and v = C,, we get
ou Jou Jou
—dx+—dy+—dz=0
> + % + » z =
ov ov ov
—dx+—dy+—dz=0
Ty Y TR T
Since u and v are independent functions, we have
dx B dy B dz
Judo ouov owd md wmd oud
dy 0z 0z dy 0z dx Ox dz Ox dy Ody Ox
Using (2) and (7), we have
dudv Jdudv gy v oJudy Ou v Jdu dv
dy 0z 0z dy _ 0z ox 0x dz _ 0x dy ayax:x(say)
P Q R
duds Pudv L dud wd o wd dudw o
dy 0z 09z dy ’ 9z 0x Ox dz Ox dy Oy ox '

Putting these values in (4), we get APp + AQq=AR or

which is the given partial differential equation.

C, be two independent solutions of the equations (2).

. (3)

e

..(5)

..(6)

)]

Ifu=C, and v=C, be two independent solutions of the system of differential

dx dy dz

, then any arbitrary function f(u, v) of u and v is a solution of

the Lagrange linear equation Pp + Qq = R. The solution f(u, v) = 0 is the general
solution of the equation Pp + Qq = R. In particular, for arbitrary constants a and b, the
solution u = av + b is a complete solution of the equation Pp + Qq =R.



Partial Differential

Remark. The Lagrange system of ordinary differential equations @ _ d—y = d—z for Equations of
. . . . . . R, the First Order
the partial differential equation Pp + Qg =R is also known as the auxiliary system of equations
or simply as the auxiliary equations of the equation Pp + Qg =R.
NOTES

WORKING STEPS FOR SOLVING Pp + Qg =R
Step I. Indentify the functions P, Q and R.

Step II. Form the system : dx :d_y = d_z

P Q R

Step III. Find two independent solutions u = C; and v = C, of the system
given in step II.

Step IV. Write f(u, v) = 0 and call it the general solution of the given equation.

Type 1. In this type, we shall consider the solution of the equation Pp + Qg =R

for which the equality of two factors of the auxiliary equations d?x = dy = dﬁz gives an

equation in the variables whose differentials are involved. Two independent solutions
of the auxiliary equations are calculated in this manner.

SOLVED EXAMPLES
Example 1. Find the general solution of the following Lagrange linear equations:
() 2p +5q=1 @ii) y°p +x°q = x%y*2*
¢22)) Yz p+xzq = y° @) zp =x
x

) (&% + 2y%) p — xyq = xz.
Sol. ) We have 2p +5q = 1.

Here P=2 Q=5 R=1
Auxiliary equations are dx = dy = il .
P Q R
ie. dx _dy dz e
2 5 1
Taking the first two fractions of (1), we get Hdx —2dy =0 (2
Integrating (2), we get bx—2y=0C, ..(3)
Taking the last two fractions of (1), we get dy —bdz=0 .4
Integrating (4), we have y—5z=0C, ...(D)

From (3) and (), the general solution of the given equation is f(5x - 2y, y — 5z)
=0, where fis any arbitrary function.

(i) We have  y?p + x%q = x%y?2%.

Here P =32 Q=x% R=x%%2
. . de dy dz
Auxil ¢ A A
uxiliary equations are — QR
. dx d dz
e, === ma3 (D

y x x“y“z

Self-Instructional Material
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Partial Differential Taking the first two fractions of (1), we get

Equations (PDE) x2dx — y2dy = 0 or 3x2dx — 3y2dy = 0 (2
Integrating (2), we get x° —y3 = C1 ..(3)

NOTES Taking the last two fractions of (1), we get 3y?dy — 3z2dz = NG
Integrating (4), we get Y3+ 3zl = C2 ...(B)

From (3) and (5), the general solution of the given equation is f(x® - y?3, y® + 3z1)
=0, where fis any arbitrary function.
2

(ti1) We have ﬁp+xzq=y2‘
x
y*z
Here P=== Q=xz,R=y"
x
Auxiliary equations are o = dy = L2 )
P Q@ R
ie., xdx _dy _dz (1)

yZZ xz y2

Taking the first two fractions of (1), we get

x2dx =y%dy or 3x%dx—3y%dy=0 (2
Integrating (2), we have «* —y®=C, ..(3)
Taking the first and last fractions of (1), we get

xdx=zdz or 2xdx-—2zdz=0 (D)
Integrating (4), we have «? —2%=C, ..(5)

From (3) and (5), the general solution of the given equation is f(x® — y®, x2 — z?%)
=0, where fis any arbitrary function.

(iv) We have zp = «x. o zpt+t0qg=x
Here P=2 Q=0 R=x
Auxiliary equations are dx = dy = il .
Q R
ie., dr _dy _dz ()
z 0 x
Second fraction of (1) implies dy =0
y=0C; ..(2)
Takmg the first and third fractions of (1), we get
xdx=zdz or 2xdx—2zdz=0 ..(3)
Integrating (3), we have «? —2%=C, ..(d

From (2) and (4), the general solution of the given equation is f(y, x% - z%) =0
where fis any arbitrary function.

() We have  (x% + 2y?) p — xyq = xz.
Here P=x2+2y2, Q=—xy, R=x2

. . x dy dz
Auxiliary equations are —=—=—.
uxiiary quatt P Q R
ie., de s = dy _dz (D)
x*+2y% —xy  xz
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Taking the first two fractions of (1), we get —; dx 5= dy .
x” + 2y - xy

dx  x%+ 2y2 dx 2x?
= = 28— =-— -4y
dy - Xy dy y
= 2xd—x+x2 (Ejz—ély ..(2)
dy y
Let z=x2
2 dz +z ( 2) =-4y
N 9= Zl=_
(2) dy y
This is a linear differential equation of order one.
P2
ILF. =eJ » =e2l08y — 52
zyzzj (-4y)y®>dy +C, or x%y? + y1=C, ..(3)
. . dy dz
Taking the last two fractions of (1), we get == + = =0 (D
y oz
Integrating (4), we get  log y +log z=log C, or yz=C, ..(d)

From (3) and (5), the general solution of the given equation is f(x2y? + y4, yz) =0,
where fis any arbitrary function.

Type II. In this type, we shall consider the solution of the equation Pp + Qg=R

for which the equality of two factors of the auxiliary equations o = dy = a gives an

equation in the variables whose differentials are involved. Another independent solution
of the auxiliary equations is found by using the first solution.
Example 2. Find the general solution of the following Lagrange linear equations:
@) p +2q =5z + tan (y — 2x) @) yp +xq = xyz® (v* - y?)
(i) x2(2% +xy) p - yz(z* + xy) q = x* @)z -q) =22+ (x+y)>
Sol. ) We have p + 2q =5z + tan (y — 2x).
Auxiliary equations are d_x = d_y = dz ) ..(D
1 2 b5z+tan(y-2x)
Taking the first two fractions of (1), we get
dy —2dx=0 ..(2)
Integrating (2), we have y—2x=C, ..(3)

Taking the last two fractions of (1) and using (3), we have
d_y B dz

—— =0 .4
2 bz+tanCy )
. 1 1
Integrating (4), we have 29~ 5 log |5z + tan C; |[=C,
or by —2log | 5z + tan (y —2x) | = 10C, ..(5)

From (3) and (5), the general solution of the given equation is
f(y-2x,5y-2log | bz+tan (y-2x) |) =0,
where fis any arbitrary function.
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Partial Differential (ll) We have yp +xq = xy22 (x2 — y2)

Equations (PDE)
. ) dx dy dz
Auxiliary equations are —=—=——F———5—. (1)
y x  xyz®(x®—y*)

NOTES Taking the first two fractions of (1), we get 2xdx — 2ydy =0 (2
Integrating (2), we have x*—y?=C, ..(3)
Taking the last two fractions of (1) and using (3), we have ydy — dz2 =0

12
(4
. 2 1(z71t
Integrating (4), we have Y _ |2 _|-¢
grating (4) 5 C | o1
2
y 1
— — = C
= 22—y 2 ..(5)
From (3) and (5), the general solution of the given equation is
2 1
f|xZ-y?, R ——5——- |=0. where fis any arbitrary function.
2 zx"-y°)
@) We have xz(z?2 + xy) p —yz(22 + xy) g = x*.
. . d. d d
Auxiliary equations are 2x = 32} = —i‘ (1)
xz(z%+xy) —-yz(z"+xy) «x
Taking the first two fractions of (1), we get dx + ay =0 (2
x Yy
Integrating (2), we have log x +logy=1log C; or xy=C, ..(3)
dx dz
Taking the first and third fractions of (1) and using (3), we get ——5——~—=—35
2(z°+Cy) x
or x¥dy — (2 + C2) dz=0 NG
4 4 2
. Ciz
Integrating (4), we have I | =C
g g @) 1 ( 1 2 2
or xt — 2t — 2uyz? = 4C, ..(B)

From (3) and (5), the general solution of the given equation is f(xy, x* — z*

- 2xyz?) = 0, where / is any arbitrary function.

(tv) We have z2p—q) =22+ (x + y)2
= a—2q =2+ (x +y)°.
Auxiliary equations are dx = @ = % ) (1)
z -z z%4+(x+y)
Taking the first two fractions of (1), we have dx + dy =0 (2
Integrating, we have x+y=C, ..(3)
. . . d
Taking the last two fractions of (1) and using (3), we have dy + 22—22 =0
z°+Cy
(4
Integrating (4), we get
1
y+§log|z2 +C%|=Cy or y +%log(z2 +(x+y)%)=C, ..(5)
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From (3) and (5), the general solution of the given equation is

f(x+y,y+%log(z2 +(x+y)2)):0>

where fis any arbitrary function.

Type III. In this type, we shall consider the solution of the equation Pp + Qq
= R by using the formula :

de _dy dz _ Pdx + Qdy + R,dz

P Q R PP+QQ+RR "’
where P, Q,, R, are some functions of x, y and z. If for some choice of P, Q,, R, the
sum PP+ Q,Q + R,R is zero, then we have P,dx + Q,dy + R;dz=0. We integrate this
equation to get one solution of the auxiliary equations. P,, Q,, R, are called multipliers.
By using different set of multipliers or by using two fractions of the auxiliary equations,
we find another independent solution of the auxiliary equations.

Example 3. Find the general solution of the following Lagrange linear equations:
@) x(y® - 2%)p +y(z° - x¥)q =2(x* - y?) (i) x(y* +2)p - y(x* +2) q =2(x* — y?)

@) (Y2 +22)p —xyq +x2=0 @v) (4dy — 32)p + (4x — 22)q = 2y — 3x.
Sol. 1) We have x(y? —22) p + y(z? — x?) q = 2(x%2 — y?).
Auxiliary equations are dx dy = dz (1)

x(y? -2%) :y(z2 —x?)  z2(x?-y?)

Taking 1 ,l ,l as multipliers, each fraction of (1)
x'y z
ldx+ldy+ldz ld3c+ldy+1dz
B X y z _x y z
(2 =22+ (2% —x?) + (2% - y?) 0

lalx +ldy+ldz=0
x y z

Integrating, we get log |x| +log |y| +log |z| =log C,

or lxyz| =C; or xyz=%C; ..(2)
Taking x, y, z as multipliers, each fraction of (1)
_ xdx + ydy + zdz _ xdx +ydy + zdz
xz(yz—22)+y2(22—x2)+22(x2—yz)_ 0
xdx +ydy +zdz=0 or 2xdx+ 2ydy+ 2zdz=0
Integrating, we get x%+y? + 22 =C, ..(3)

From (2) and (3), the general solution of the given equation is f(xyz, x2 + y2 + z?%)
=0, where fis any arbitrary function.

(11) We have x(y2+2) p —y(@? + 2) g = 2(x2 —y?).
dx dy dz
Auxiliary equations are = = .1
ved x(y?2+2) —yxZ+z) 2x%-y?) M
Taking x, y, — 1 as multipliers, each fraction of (1)
xdx + ydy + (-1 dz _xdx + ydy —dz

B xz(yz+z)—y2(x2+z)—z(x2—y2)_ 0

Partial Differential
Equations of
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Partial Differential 2xdx + 2ydy —2dz =0

Equations (PDE) Integrating, we get «x%+y* —2z=C, .2
Taking l ,l ,l as multiplier, each fraction of (1)
NOTES xy 2z
1alx+1aly+1alz 1alx+1aly+1alz
X y z _x y z
oy tz—xt-z+a% - y? 0

lalx +ldy+ldz=0
x y z

Integrating, we get log |x| +log |yl +log |z| =log C,
or lxyzl =C, or xyz=%C, ..(3)

From (2) and (3), the general solution of the given equation is
f(x2 + y? - 2z, xyz) = 0, where f is any arbitrary function.

(111) We have 2+ 2% p —xyq = —xz.
. . d. d d
Auxiliary equations are —; ad 5 = Y _ 92 ..(D
y +z — Xy — X2
) ) dy dz
Taking the last two fractions of (1), we get 7 LT 0
Integrating, we have log |yl —log |z| =log C,
Yy Yy
or =|=Cy or ==1£C; ..(2)
z z

Taking x, y, z as multipliers, each fraction of (1)

xdx + ydy + zdz _ xdx + ydy + zdz

xy? +xz% —xy? —x2? 0
2xdx + 2ydy + 2zdz =0
Integrating, we have &% + y? + 22 = C, ..(3)

From (2) and (3), the general solution of the given equation is f(y/z, x2 + y? + z?%)
=0, where fis any arbitrary function.

@Gv) We have 4y —3z)p + (4x —22) g = 2y — 3x.
dx dy dz

Auxiliary equations are = = (1)
4y -3z 4x -2z 2y-3x
Taking a, b, ¢ as multipliers, each fraction of (1)
adx +bdy + cdz
T a(4y —32) +b(4x — 22) + c(2y — 3x)
Let a4y —3z) + b(4dx — 22) + ¢y — 3x) =0 ..(2)
2 = (@Ab-3c)x+@a+2)y+ (-3a-2b)z=0
Let 4b —-3¢=0,4a+2c=0,—-3a—-2b=0

= b:c=3:4, a:c=1:-2, a:b=-2:3
= a:b:c=-2:3:4
@)istruefora=—-2,b=3,¢c=4
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Each fraction of (1)

— 2dx + 3dy + 4dz —2dx + 3dy + 4dz

204y -32)+3(4x — 22) +4(2y —3x) 0
—2dx + 3dy +4dz=0
Integrating, we have — 2x + 3y + 42 = C; (3
Also, (2) = 4(ay+ bx) —3(az+ cx) +2(cy—bz2) =0
Let ay+bx=0,az+cx=0,cy—bz=0
: a:b=—x:y, a:c=—-x:z b:c=y:z

a:b:c=—x:y:z
@) is truefora=—x,b=y,c=z.
Each fraction of (1)

—xdx + ydy + zdz _ —xdx +ydy + zdz
—x(4y —3z) + y(4x — 22) +2(2y - 3x) 0

—2xdx + 2ydy + 2zdz=10
Integrating, we get —x? + y% + 22 = C, .4

From (3) and (4), the general solution of the given equation is
f(- 2x + 3y + 4z, - x2 + y2 + 2%) = 0,
where fis any arbitrary function.
Type IV. In this type, we shall consider the solution of the equation Pp + Qq =
R by using the formula :
dx dy dz Pdx+Qudy+Rdz
P Q R PP+QQ+RR "’
where P,, Q,, R, are some functions of x, y and z. If for some choice of P, Q,, R,, the
sum P,dx + Q,dy + R,dz is exact differential of a factor of P,P + Q,Q + R|R, then the

Pdx + Q,dy + Rdz
PP+Q,Q+RR
to get one solution of the auxiliary equations. By using different set of multipliers or
by using two fractions of the auxiliary equations, we find another independent solution

of the auxiliary equations.

quotient is equated with a suitable fraction of auxiliary equations

Example 4. Find the general solution of the following Lagrange linear equations:
@) (x* —yz) p + (y* —2x) q =2% —xy
@) (y+z)p +(z+x)qg=x+y

. 1
@t)pcos(x+y)+tqgsin(x+y)=z+ —
z
(iv) (" +yz +2%) p + (2° +2x +2%) g = 2% +xy +y%
Sol. 1) We have (x? —yz) p + (y%2 — 2x) q = 2% — xy.

dx dy dz

Auxiliary equations are 5 =— =— (1)
x“—yz y -zx z°-xy

Taking 1, 1, 1 and x, y, z as multipliers, each fraction of (1)

ldx +1.dy +1dz _ xdx + ydy + zdz

xZ—yz+yt—zx+z2—xy x-xyz+yd —xyz+2% —xyz

Self-Instructional Material
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Partial Differential dx +dy +dz xdx + ydy + zdz
Equations (PDE) =

x2+y2+22—yz—zx—xy_(x+y+z)(x2+y2+zz—yz—zx—xy)

= (x +y+Z)d(x+y+z)=l(2xdx+2ydy+2zdz)
NOTES 2

= (x+y+z)d(x+y+z)—%d(x2+y2+z2)=0

. 1 1
Integrating, we get 5 (x+y+ 2)? - 5 (x? + y2 +2%)= C,

or xy +yz+zx=C; ..(2)
Taking 1, -1, 0 and 0, 1, — 1 as multipliers, each fraction of (1)

3 dx—dy+0 _ O0+dy—-dz
T @ -y - -z +0 0+ (y? —zx) - (2% —xy)
dx — dy B dy —dz
- xz—yz+Z(x—y)_y2—zz+x(y—z)
_ dx — dy _ dy —dz
xx-ykx+y+2) (y-20(@+z+x)
- dx-y) _dly-2)_,

xX—y y—2z
Integrating, we get log | x—y [ —log | y —2 | =log C,

or

o) =C, or x_y:J_rCZ ..(3)
y—2z y-z

From (2) and (3), the general solution of the given equation is

f(xy +yZ + zX, X y] =0, where fis any arbitrary function.

(11) We have y+2)p+t(@E+tx)g=x+y.

Auxiliary equations are dx _ dy _ dz ..(D

y+z z+x x+y

Taking 1, -1, 0 and 0, 1, — 1 as multipliers, each fraction of (1)
dx—-dy+0 0+dy—-dz

T (yt+2)-(z+x0)10 0+(Gz+x)—(x+y)

de—-dy dy-dz _ dx—y) dly-2) _

(2

= - 0
-(x-y) —-(y-2) x-y y-z
Integrating, we get log | x—y | —log | y—z | =log C,
= 7y =C; or _sz_rCl .. (3)
y—2z y—2z
Taking 1, -1, 0 and 1, 1, 1 as multipliers, each fraction of (1) and (2)
dx—-dy+0 dx +dy+dz

(y+2)-z+0+0 (y+2)+z+0)+@x+y)
dix-y) dx+y+z) or 2du—y)+du+y+z):0
—(x-y) 2x+y+2) x—y x+y+z
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Integrating, we get 2log | x—y [ +log | x+y+2z | =log C,
= @-!lx+y+z1=C, = @—p?@x+y+2==C,
From (3) and (4), the general solution of the given equation is

y-z’

f[ﬂ x - y)? (x+y+z))=0,

where fis any arbitrary function.

. 1
(tit) Wehave pcos(x+y)+qgsin (x+y)=z+ —.
z

Auxili . dx dy dz
uxiliary equations are =— =
cos(x+y) sin(x+y) 1
z+=
z
Taking 1, 1, 0 and 1, — 1, 0 as multipliers, each fraction of (1)
dx +dy +0 dx —dy +0

(D)

- cos(x +y)+sin (x +y)+O: cos(x+y)—sin(x +y)+0

D and (@ zdz d(x+y)
(M and @) = 22+1 cos(x+y) +sin(x+y)
1 2zdz dt dt
= . = = - ,where t=x+y.
22241 cost+sint /2 sin (t+m/4)
1 2z

= —.Q—dz—cosec(t+£)dt=0
V2 2?41 4
Integratin tilo |22 +1]-1o tanl t+2|=1ogC
egrating, we ge 72 g g 2 1 g C,;

(22 + 1)1/\/§

=
tan(x+y +nj
2

8

Also, (2) = cos(x+y)—sin(x+y)d(x+y):d(x_y)
cos(x +y)+sin(x +y)

t—sint
N Mdt—d(x—y)zo, where t =x + y.
cost+sint
Integrating, we get log| cost+sint | —(x—y)=logC,
= | cost+sint | e*=C,
= (cos(x+y)+sin(x+y))e’ *=£C,

From (3) and (4), the general solution of the given equation is

(Z2 + 1)1/\/E

tan(x+y+n)
2 8

where fis any arbitrary function.

f y(cos(x+y)+sin(x+y))e¥ ™ =0,

(2

. (3)

e
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@) Wehave (y2+yz+29)p+ (@2+zx+x2) g=a2+xy+y2

Auxiliary equations are dx = dy = dz ..(D

yi+yz+z? ZP4zx+x? xZ+xy+y?

Taking 1, -1, 0 and 0, 1, — 1 as multipliers, each fraction of (1)

B dx—dy+0 B 0+dy—-dz
WP ryz+28) -2 +2zx+x)+0 0+(GE%+zx+x%)— (% +xy +y?)
dx —d. dy —d
= 2 3; 2 2 32} i
y —x“+yz—zx 2z -y +zx-—-xy
- dx —dy 3 dy —dz
(y-x)(y+x+2) (z-y)(z+y+x)
dix — _ _ _
. -y) _dly-2) _ dly-z) dlx-y) .
—(x-y) -(y-2) y-z x-y
Integrating, we get log | y—z1|—-log | x—y | =logC,
= Y2 =C; or y_Z:iC1 ..(2)
x-y x-y
Taking 1, -1, 0 and 1, 0, — 1 as multipliers, each fraction of (1)
_ dx —dy _ dx —dz
(2 +yz+28) - (22 +zx +2?) (P +yz+2%)—(x® +ay +y?)
dx —dy B dx —dz
= 2_ 2 =2 .2
y —x"+yz—zx z°—-x"+yz—2xy
dx —dy B dx - dz
- (y—-2)y+x+2) @E-x)(z+x+y)
dx—-dy dx-dz dix-z) dx-y)
-(x-y) -(x-2) x-z x-y
Integrating, we getlog | x—z | —log | x—y | =log C,,.
x—z x—z
= :CZ or :iCZ (3)
x=y x—=y
From (2) and (3), the general solution of the given equation is
y-2 , x- ZJ =0, where fis any arbitrary function.
X-y x-y
EXERCISE
Find the general solution of the following Lagrange linear equations:
1. )p+qg=sinx @) ap +bg=c
(111) ptan x + gtan y =tan z @iv) yzp + zxqg = xy
V) ap+yg==z (i) &°p + y*q = 2*
it) xk—a)p+(y—-b)g=z-c¢ (vti) y2p — xyq = x(z — 2y)
2. (1) p—2q=3x%sin (y + 2x) @) p+3g=2z+cot (y - 3x)
(i) zp—zg=x+Yy (v) y*q — xy*p = axz
(V) xyp + y*q + 247 —xyz = 0 ) p—q) (x+y) =2
(vi1) z(xy + 22)(px — qy) = x* (vtil) xzp +yzq = xy



bl

M) @E-yp+Ex-2)g=y—x

(111) (__lJp+(l_1)q=l_l
y x z y X

(v)( Jyzp+(

4. (O) (x2—y%2—-22p + 2xyq = 2xz
@Wi)) (% —y? —y2)p + (&% - y*

a}zx _(a—b
b 4 c

(Vi) x(y* = 29)p — y(@* + 2%)q = 2(x* + y%)

@) x(y —2)p + y(z — 0)q = z(x — y)

(iv) 2*(y = 2)p + y*(z — 0)q = 2%(x ~ )

J xy (V) 2(x+y)p+2x—y)g=x>+y2

(vitr) (x—y)p + (x +y)q = 2xz
@ A+y)p+(Q+xqg==z

—2x)q =2z(x—y) (V) x2p + y2q = xy

) xx+y)p—yx+y)g+ x-yRx+2y+2z) =

i) (yx+y)+az)p+(x(x+y)—az)g=2(x +y)

i) xp+zqg+y=0

(vitD) (& + yH)p + 2xyq = (x + y)z.

Answers

1. () f(x—y,z+cosx) =

(i) f(s%nx ’ sinxJ: 0

siny "sinz
®) f(f,lj =0
y z

(vii) f(x_“ ,—y_bJ
y-b z-c

2. () fCx+y x’sin Qx+y)—2)=

0

Qi) fx+y, 2(x+y)x—22 =0

2_2_’“‘]:0
Y

(vi1) flxy, x* 2xyz2 —zH =0

W f [i ,x —log
y

3. () fix+y+z x2+y2+23)=0

@) flx +y +z, xy2) =

) flax® + by? + c22, a?x? + by? + ¢%2?)
(vir) f(x® + y2 + 22 x/yz) = 0

@) flbx—ay, cy —bz) =0

() fix2—y%, x> -2%) =0

(viii) fla? + y%, yz = y?) =0

(i) £ (y —3x,% —log|z + cot (y —3x)|)=0

@v) f(xy, log| z| +%J =0

i) flx+y,x—(x+y)log | z1)=0

(viin) f (xy - zz,i) =0
Y
@) fle+y+2,x92) =0

1 1 1
Gv) (xyz,—+—+—) =0
x oy

z

=0 () fQxy—22x2—-y>-25)=0

(vitr)

Fle+y-toglz] a2+ yPen2en 0 )

0 f(y M]_o
z

2 .2
(iii)f(z—ery,x 2 ]=0

z

) f(xy, (x+y)x+y+2)=0

.. x
(i) f y2 +22,—71 =
etan (y/z)

) f((1+x)2—(1+ )2 MJ 0

i) f (f J
y
X +

) f (

x -y —2az)=0

y x+y
viit) f s =0.
wii [y ]

z
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Partial Differential
Equations (PDE)

NOTES

3.

4.

Hints
(vi) Try x, —y, —z and y, x, — z as multipliers.
(vit) Try x, y, z and 1/x, — 1/y, — 1/z as multipliers.
(@) Try x, y, z as multipliers. @ir) Try 1, 1, 0 as multipliers.
@i1) Try 1, — 1, 0 and x, —y, 0 as multipliers. (fv) Try 1/x, 1/y, 0 as multipliers.
(v) Try 1,1, 0 and 1, 1, 1 as multipliers. (vi) Try 1, 1, 0 and x, —y, 0 as multipliers.

1 y
—d -=|d
.. dx O+zdy—-ydz =z y+( Zz} ‘ d(y/z)
(vit) We have — = 5 5 = 5 = 5
x 4 +y (y) 1+ (y/2)
1+|=
z
10g|x|—tan_ll=1ogC.
z

(viit) Try 1, 1, 0 and 1, — 1, 0 as multipliers.
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3. PARTIAL DIFFERENTIAL
EQUATINS OF THE FIRST ORDER
(Equations Non-linear in p and q)

STRUCTURE

Introduction

Special Type I : Equations Containing Only p and ¢
Special Type II : Equations of the Form z = px + qy + g, q)
Special Type III : Equations Containing only z, p and q
Special Type IV : Equations of the Form f,(x, p) = £,(y. @)
Use of Transformations

Charpit's General Method of Solution

INTRODUCTION

By now we have learnt the method of solving first order partial differential
equations which are linear in partial derivatives p and q. A partial differential equation
of first order need not be linear in p and q. In the present chapter, we shall study the
methods of solving such equations. In the first part, we shall study the method of
solving some special types of equations which can be solved easily by methods other
than the general method. In the second part, we shall take up Charpit’s general
method of solution.

SPECIAL TYPE | : EQUATIONS CONTAINING ONLY
p AND q

e
1) = g, o@)=0.

Let g, =0 ..(D
be a partial differential equation of first order and containing only p and q.
Let z=ax+o@y+c ..(2)
be the complete solution of (1), where ¢(a) is some function of a.
o o
@ = p=+-=a and q=§=¢(a>



Partial Differential .. Complete solution of (1) is

Equations (PDE) 2= ax+0(@)y+e,
where g(a, 0¢(a)) = 0 and a, ¢ are arbitrary constants.
NOTES To find the singular solution, let
[, y,2,a,¢c)=z—ax—¢(@)y —c
of of

Using f(x, v, 2, a, ¢) =0, o 0, % 0, the singular solution is given by
eliminating a and ¢ from the equations :
z—ax—0@y—-c=0, —x—¢(@y=0 —-1=0
This is impossible, because — 1 # 0.
There is no singular solution.

To find the general solution, let ¢ = y(a), where y is any arbitrary function.

Using f(x, v, 2, a, y(a)) =0, g—f =0, the general solution is given by
a

z-ax-¢(@) y-vy(@) =0,-x-¢(ay-vyi()=0.

SOLVED EXAMPLES
Example 1. Solve the following partial differential equations :
@) p* +q* =) @) p* - ¢* =k*
@i)p=29°>+1 @uyp2+6p+29+4=0.
Sol. (i) We have pZ+qg? =22 (1)
This equation is of the form g, q) =0.
Let z=ax+o@y+tc ..(2)
be the complete solution of (1), where ¢(a) is some function of a.
2 = p=§—i=a and q=?—3;=¢(a)

1) = a®+@@)? =22 or ¢(a)=+A2 —a?

Let oa)=422-a? and -A<a<A.

The complete solution is z=ax+A%2-a% y+e¢, where a and ¢ are
arbitrary constants and — A < a < A. There is no singular solution.
To find the general solution, let f(x, y, z, @, ¢) =z —ax — \/A* —a® y —c and ¢ =
y(a@).

Using f(x, v, z, a, y(a)) = 0, g—f: 0, the general solution is given by the
o

z—ax—\lkz —a?y-y@=0, -x+

a ’
——y-Vv(@=0,
\/kz -a?
where y is any arbitrary function.

(11) We have pi—qg*=Fk2 (D
This equation is of the form g, q) =0.

equations
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Let z=ax+d@y+c ..(2)
be the complete solution of (1), where ¢(a) is some function of a.
Q2 = ng—iza and q=?—3;=¢(a)

(1) = a®-(0@)?=%% or ¢(a)=1+a® - &>

Let (@) = yJa? - k2 and a® = k2

The complete solution is z=ax++a?-k? y+c¢, where a and ¢ are
arbitrary constants and a? > k2.
There is no singular solution.

To find the general solution, let

flx,y,z,a,c)=2z —ax —\laz — k2 y —c and ¢ = y(a).

Using f(x, v, z, a, y(a)) = 0, g_f: 0, the general solution is given by the
a

z—ax—wla2 - k2 y-y@=0, —-x-

where y is any arbitrary function.

equations

y—W'(a)=0,

a
1/a2 -Kk2

(111) We have p=2¢%+ 1. (D
This equation is of the form g, q) =0.
Let z=ax+o(@)ytc ..(2)
be the complete solution of (1), where ¢(a) is some function of a.
2 = ng—iza and qzé—aj,:q)(a)
2 a-1
1 = a=2(0a))” +1 or ¢la)=1= 2

Let ¢(a):1/a;1 and a > 1.

. . -1
The complete solution is z:ax+‘[a2 y+e¢ , where a and c¢ are

arbitrary constants and a > 1.
There is no singular solution. To find the general solution, let

f(x,y,z,a,c)=2z —ax _W/aT—l y—c and c=wyl(a).

)
Using f(x, v, z, a, y(a)) = 0, £= 0, the general solution is given by the

equations:

a-1 1
z—ax—wf— -y@=0, -x-——y-vy'(a)=0,
2 y-v 202 '_a—ly v

where v is any arbitrary function.
(tv) We have pi+6p+29+4=0. LD
This equation is of the form g, q) =0.

Partial Differential
Equatins of the
First Order
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Partial Differential Let z=ax+ol@y+ec (2

Equations (PDE) be the complete solution of (1) where ¢(a) is some function of a

0z 0z
2 p=—=a and g=—=¢(a)
NOTES @ = o %
2
1 = a?+6a+20@+4=0 or ¢(a)=—(%+3a+2}

2
The complete solution is z =ax — (% +3a + ZJy +c, where a and ¢ are

arbitrary constants.
There is no singular solution. To find the general solution, let

2
f(x,y,z,a,c)=2z —ax +(%+3a+2}y—c and c=vy(a).

Using f(x,5,2,a,v(a)) =0, gf

— =0, the general solution is given by the
a

equations :
a2
z—ax+(?+3a+2jy—w(a):0,—x+(a+3)y—w’(a):0,

where y is any arbitrary function.

WORKING STEPS FOR SOLVING g(p, q) =0

Step I. Take complete solution as z = ax + ¢(a) y + ¢ where a and ¢ are
arbitrary constants.

i _% a, q= % _ o(a)

Step II. Find P o @ q 3 )
Step III. Substitute the values of p and g in g(p, q) = 0 and find the value of ¢(a)
in terms of a. Put the value of ¢(a) in the complete solution z = ax + ¢(a)

y+ec.
Step IV. For general solution take f(x, v, 2, a, ¢) =z —ax — 6(a)y — ¢, and ¢ = y(a).

Differentiate ‘f’ partially w.r.t. a and write the general solution as
of ) ,
&, 5, 2 0, w(@) =0, 57 =0,i.e.z—ax— 0@y -y@=0,~x— @y~
v (a) = 0, where y is any arbitrary function.
Step V. Equation of the form g(p, q) = 0 has no singular solution.

EXERCISE A
Solving the following partial differential equations :
1. p?2+4¢*°=16 2. p=¢*
3. p2-¢%2=1 4. p +q=pq
5. p*’+p=¢* 6.p+qg+pg=0
7. p=ed 8. p2+ ¢>=npq
9. p’g’=1 10. pg = k.
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Answers

C.S. z=ax —y16-a? y +c , where a and ¢ are arbitrary constants and —4 <a<4.

S.S. No singular solution.

G.S. z—ax—16 —a® —y(@) =0, - x + % y — ' (a) =0, where yis any arbitrary
16 -a

function.

CS. z=ax+ «/;y + ¢, where a and ¢ are arbitrary constants and a > 0.

S.S. No singular solution.

1
G.S.z-ax-+a y—-yl@=0,-x— ol y —y’(a) =0, where y is any arbitrary function.
a
C.S. z=ax + \[aQ -1y +c,where a and ¢ are arbitrary constants and [a| > 1.
S.S. No singular solution.
G.S.z—-ax — a? -1 y-wl@) =0, —x- % y—y (a) =0, where y is any arbitrary

a“ -1
function.

C.S. z=ax +

y + ¢, where a and ¢ are arbitrary constants and a # 1.

S.S. No singular solution.

;zy —y’(a) =0, where y is any arbitrary

G.S. z—ax—Ly—w(a)zo,—x+
a-1 (a-1)

function.

C.S. z=ax + 1[(12 +a y +c, where a and c are arbitrary constants andae R - (-1, 0).

S.S. No singular solution.

2a +1

G.S.z—ax — a®+a y—-y(a)=0,—x — f y —y'(a) =0, where y is any arbitrary
2{a” +a

function.

CS.z=ax— ¥+ ¢, where a and ¢ are arbitrary constants and @ #— 1.

a+1

S.S. No singular solution.

a

G.S. z—ax + y-—yla)=0,—x +
+1

1
Wy —y(a)=0, where y is any arbitrary
a+

a

function.
C.S.z=ax+ylog a+ ¢ where a and ¢ are arbitrary constants and a > 0.
S.S. No singular solution.

G.S. z—ax—yloga—w(a)zO,—x—l—w’(a):O, where y is any arbitrary
a

function.
C.S. z=ax + % (n + ,lnz - 4) y +¢, where a and ¢ are arbitrary constants.

S.S. No singular solution.

G.S. z—ax—%(n+ﬂn2—4)y—\|1(a)=0,—x—%(n+wln2—4)y—\u’(a)=0, where y

is any arbitrary function.

Partial Differential
Equatins of the
First Order
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Partial Differential

_ -2/3 .
Equations (PDE) 9. CS.z=ax+a y +c¢,where a and ¢ are arbitrary constants and a # 0.

S.S. No singular solution.

G.S. z—ax-a 2y —yla)=0,—x + E(1_5/3 y —y(a) =0, where y is any arbitrary
NOTES 3

function.
10. C.S. z=ax + Ey +c¢ , where a and c are arbitrary constants and a # 0.
a
S.S. No singular solution.

G.S. z—ax - ﬁy —yla)=0,-x + %y —y’(a)=0, where y is any arbitrary function.
a a

SPECIAL TYPE Il : EQUATIONS OF THE FORM
z = px + qy *+ g(p, q)

Consider the equation z=px+qy+gh,q). (D)
Let z=ax+by+c ..(2)
be a solution of (1).
0z 0z
2 = p—g—a and q—g—b
(1) =ax+by+c=ax+by+g,b)
= ¢ =g(a, b)
2 = z=ax+ by + g(a, b).

Complete solution of (1) is
z = ax + by + g(a, b), where a and b are arbitrary constants.
To find the singular solution, let f(x, y, z, a, b) = z — ax — by — g(a, b).

) )
Using f(x, v, 2, a, b) = 0, £=0,£=0, the singular solution is given by
eliminating a and b from the equations :
og og ) ) o
z-ax-by-g(a,b)=0, —x- S 0, -y- e 0, provided it satisfies the

given equation.

To find the general solution, let b = y(a), where y is any arbitrary function.
. %)
Using £, 3,2 @, w(@) =0, 2

a
z-ax - y(a)y - g@a, y(a)) =0,-x - y'(a) y - g'(a, y(a)) = 0.

Remark. The partial differential equation z = px + qy + g(p, q) is analogous to the
Clairaut’s equation z = px + f(p). The equation z = px + qy + g(p, q) is known as extended
Clairaut’s equation.

=0, the general solution is given by

SOLVED EXAMPLES

Example 2. Solve the following partial differential equations :
(i) 2 =px +qy +pq (i) z =px +qy +p*q®

@) z = px+qy+4 41+ p2 + q2 @v) z =px +qy +log (pq).
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Sol. (1) We have
This equation is of the form

z=px+qy+pq.
z=px+qy+8®, Q.

(1)

Partial Differential
Equatins of the
First Order

Complete solution of (1) is z = ax + by + ab, where a and b are arbitrary

constants.
To find the singular solution, let
flx,y,z,a b)=z—ax—by—ab

o _ S _

Py =—x-b and B - Ya
f,y,2,4,)=0 = z-ax-by-ab=0
iZO = -x-b=0

oa
of B
w 0 = Tymas0

Putting the values of @ and b from (3) and (4) in (2), we get

2= x—-(Cx)y—(=3y»Ex)=0 or z+xy=0andit also satisfies (1).
Singular solution is z+xy=0.

To find the general solution, let b = y(a).

%)
Using f(x,y, 2, a,\u(a))=0,—f=0, the general solution is given by the

Joa

equations :

z-ax-y@ y-ay@) =0,-x-y'(a) y-vy(a) - ay’(a) =0, where y is any

arbitrary function.
(11) We have z=px+qy+ p>
This equation is of the form z = px + qy + g(p, q).

Complete solution of (1) is z = ax + by + a%b?, where a and b are arbitrary

constants. To find the singular solution, let
flx, v, z, a, b) = z — ax — by — a?b?

9 9
% =—x—2ab? and %Z—y—Zagb
fixy, z a, b)=0 = z—ax—-by—a?b?=0
S—Z =0 = —x—2ab?>=0
9
%:0 = —y—2a*b=0
2 X 2 Yy 3 _Xxy xy 1
ab”=-—,ab=-=, (ab)’=—"—, ab=|—
2 2 4 4
x (4 vs x 23 x? v
(ab)b:—— = :—E(EJ :—W:—(g] .

Similarly,

9 \1/3
a=-— y_

)2 U3 42 3 2 1 1 1
B 0 2/3  2/3 3 _
z+(2_x] x+(5J Y (4) =0 ke y (21’3+21’3 2.21’3)_0

(2
(3

e

(D)

(2
(3

e

NOTES
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Partial Differential

3
Equations (PDE) = zZ=- 94/3 x*% y?3,

This gives the singular solution, because it also satisfies (1). To find the general

solution, let b = y(a).
NOTES v

Using f(x, 5,2 a (@) =0, gf

— =0, the general solution is given by the
a

equations :

z - ax - y(a) y - a*(y(a))* =0, - x - y'(a) y - 2a (y(a))? - 2a%y(a) y'(a) = 0,
where y is any arbitrary function.

@ii) We have  z=px+qy+4y1+p%+¢> . (D)

This equation is of the form z = px + qy + g, q).
Complete solution of (1) is

z=ax + by + 4,41+ a% + b2, where a and b are arbitrary constants.
To find the singular solution, let

fx,y,z,a,b)=2z —ax —by — 441+ a? +b>

o o4 g Y, 4
da Jira?+b? ob Jl+a?+b?

fx,y,2,a,)=0 = z-ax-by— 4y1+a?+0b% =0 (2

of 4a

— =0 —x—- ——= =0 ..(3)
da J1+a® +b?

9

—f:() N _y_L:()

o
db 1[1+a2+b2

2,12
Using (3) and (4), we get x2 + y2 =M

1+a?+b2

2 2
16_x2_y2:16_16(a +b ): 16

1+a2+b%2 1+a%+b2
flra2+p?o %
1[16—x2—y2

1¢1+a2+bz X 4 X

3 = Q=—X——"——=——. == .
4 4 \/16—x2—y2 \/16—x2—y2
Similarly, b=- Y
\l16—x2 —y2

Putting the values of @ and b in (2), we get

2 2

z+ ad + Y - 16 =0
\/16—3c2—y2 \/16—3c2—y2 \/16—3c2—y2

2.2
or z=16x—y=w/16—x2—y2 or x2+y2+z2=16.
\l16—x2—y2
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This gives the singular solution, because it also satisfies (1). To find the general
solution, let b = y(a).

Using f(x, v, 2z, a, y(a)) =0, g—f =0, the general solution is given by the equations:
a
4 ’
z - ax — y(a)y - 4\/1+ aZ+(@)2=0, -x-y@y- (a+y@y’'(@) =0,

V1+a2 + (y(a)?
where y is any arbitrary function.

(tv) We have z=px+ qy + log (pq). (D)
This equation is of the form z = px + qy + g(p, q).
Complete solution of (1) is
z=ax +by +1og (ab), where a and b are arbitrary constants.

To find the singular solution, let f(x, y, z, a, b) = z — ax — by — log (ab)

of __,._1 o __,_1
T A
fx, v,z a, b)=0 = z—-ax—by—log (ab) =0 ..(2)
1
I _y S x- = =0 e)
oa a
o _ 1_
% =0 = V-3 =0 .4
1
3) = a=-— and (9 = hb=——
x Yy
1
(2) = z+4+l+l-log—=0 = z+2+logxy=0.
xy

This is the singular solution, because it also satisfies (1). To find the general
solution, let b = y(a).

Using f(x, y,z, a, y(a)) =0, g—f =0, the general solution is given by the equations:
a
z—-ax - y(a)y-loga-logy(a) =0,-x - y'(@)y - 1 t’((a)) =0
a

where y is any arbitrary function.

Example 3. Show that the complete integral of z =px +qy — 2p — 3q represents
all possible planes through the point (2, 3, 0). Also find the envelope of all planes

represented by the complete integral, i.e., find the singular solution.
Sol. We have z=px+qy—2p-—3q. (D)

This equation is of the form z = px + qy + g(p, q).

Complete solution of (1) is z=ax + by — 2a — 3b, where a and b are
arbitrary constants. This represents a family of planes each passing through (2, 3, 0)
because 0 = a(2) + b(3) — 2a — 3b for all constants a and b.

To find the singular solution, let

flx, v,z a b)=z—ax—by—2a—-3b

Partial Differential
Equatins of the
First Order

NOTES

Self-Instructional Material 37



Partial Differential
Equations (PDE)

NOTES

of of
I o= —x-220, L0 =5 —y_3=0
a7 o Y

z—a(=2)-b-3)-2a—-3b=0 or z=0.Italso satisfies (1).

The singular solution is z=0.

Step I. Take complete solution as z = ax + by + g(a, b), where a and b are

Step II. For singular solution, take f(x, y, z, a, b) = z — ax — by — g(a, b). Find

Step III. For general solution, take b = y(a), where y is any arbitrary function.

WORKING STEPS FOR SOLVING z = px + qy + g(p, q)
arbitrary constants.

S—Z and g—]; . Eliminate a and b from the equations : f = O,g—z = 0,3—’; =0.

This gives the singular solution.

of

P 0 constitute the general solution.
a

The equations : f =0,
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11.

12.

EXERCISE B

Solve the following partial differential equations (Q. No. 1-10) :
z=px+qy+5pq 2.z=px+qy+p*+ g’
z=px+qy+p’-q* 4.z=px+qy-2p-3q
z=px+qy+ 3(pg)'"? 6.z=px+qy+plq
8

z=px+qy+ 2/pq .z=px+qy—21/pq

z=px+qy+ p>+ pg+ ¢? 10.z=px+qy+,/up2+3q2+1.

bq
bg—-p—-q
family of planes such that the algebraic sum of the intercepts on the three coordinates
axes is unity.

Show that the complete integral of the equation z = px + qy + represents a

Show that the complete integral of the equation z = px + qy + 1[p2 +q? +1 represents a

family of planes each at a unit distance from the origin.

Answers
C.S.z=ax+ by + 5ab
S.S.5z+xy=0
G.S.z—ax—y(@) y —bay(a) =0, x+ 5y(a) + (y + 5a) y(a) =0
C.S.z=ax+ by + a? + b2
S.S.x2+y2+42z=0
GS.z—ax—y(@y—a—@)?=0,x+2a+ (y+ 2y@) y(a) =0
C.S.z=ax+by+a?-b?
S.S.x2—y2+42=0
GS.z—ax—vy@y—a*+ @)?=0,x+2a+ (y—-2y(@) v(a) =0
C.S.z=ax+ by—2a—-3b
S.S.z2=0
GS.z—ax—y@y+2a+3y(@=0,x+y-3)y(@-2=0



5. C.S.z=ax+ by+ 3(ab)'/? Partial Differential
SS.xyz—1=0 Equatins of the
@ ‘@) First Order
G.S. z— ax—y(@) y — 3@ y@) =0, x+ W (@) y + % =0
a y(a
v NOTES
6. C.S.z=ax+by+alb
S.S.xz+y=0
GS.z-ax—vy(@)y-— 2 -y x+y(@y+ 1 —L’(a) =
. . x w(a) 3 v w(a) (w(a))z
7. CS.z=ax+by+ 2@
SS. (x—-2)(y-2=1
(a) +ay’(a)
G.S.z—ax—y(@) y— 24Jay(a) =0, x+ y'(a) + % =
8. CS.z=ax+by- 2@
SS. (x—2)(y-2=1
G.S.z—ax—wy(a@) y+ 2Jay(a) =0, x+ y'(a)y— M =0
Ve v(a)
9. C.S.z=ax+by+a’+ab+ b2
S.S.x2+3y2—xy+32=0
GS.z—ax—vy(@)y—a*—ay(a) — (y@)2=0,x+ @y +a+2y@) vy +2a+ya=0
10. C.S.z=ax+by+.loa? + Bb2 +1
2 2
ss. T+ 4221
o
G.S.z—ax—\u(a)y— \/(Xa2+6(\|!(a))2+1 :O,X+\|I/(a)y+ a(X+BW(a)W(a) -0
Joa? + B(y(a)? +1
Hint
7. S.S.We have z—ax— by — 2,/gp =0, 9c=—\/E and y=—\/%.
a
Now x—z=x—(ax+by+ 2gp)= —\/E+0t\/g+b\/g—2\/£=—\/E
a a b a
Similarly, y —z= - \/E‘
b
SPECIAL TYPE Ill : EQUATIONS CONTAINING ONLY
z, p AND q
Let gz p, =0 (1)

be a partial differential equation of first order and containing only z, p and q.
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Partial Differential Let z = G(u) where u=x + ay be a solution of (1) where a is an arbitrary constant.

Equations (PDE) dz ou dz dz dz ou dz dz
p=——7—=—".1=— and g=——=—.a=a—
du ox du du du dy du du
NOTES L) = g(z,ﬁ,aﬁ) =0
du du

This is an ordinary differential equation of first order. The solution of this
equation, say f(x, y, z, a, b) = 0 gives the complete solution of (1) where a and b are
arbitrary constants. The singular solution is obtained by eliminating a and b from the
equations :

of of ) . . . .
f(x, y,2 a b)=0, % 0,£ =0, provided it satisfies the given equation.

Let b= ¢(a) where ¢ is an arbitrary function. The general solution is given by

the equations :

)
fx, 9, 2, a, d(@) =0, a—f =0.
a
SOLVED EXAMPLES
Example 1. Solve the following partial differential equations :
O p*+q* =4z (@) 22 (p*+q*+1)=1
@it) p(1 - q*) =q(1 - 2).
Sol. (i) We have pi+q? =4z (D

This equation is of the form g(z, p, q) = 0.
Let z = G(u), where u = x + ay be a solution of (1).

_% _dzou_de . o 0z _dzou_ dz
Poox Tdu . du =% " duy “du

(d_zf +(a d_zf 4z
1 = du du)

2
dz 2
= 1+ a?) dz =4z = ——= 212
du du  1+q?
dz 2
= T
z l1+a

Integrating, we get 2z = 2u +b

1/1+a2
= 21 +a? «/_:2(x+ay)+b\11+a2

= 41+ a?z=4(x + ay + ¢)?, where 2¢ = b1+ a?
= (@(+a?)z-(x+ay+c)=0.

This is the complete solution.

Let fix,y,2,a,¢)=0+a? z—(x+ay+ c)?

) )
—f=2az—2(x+ay+c)y and —f=—2(x+ay+c)
oa dc
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fe,y,2,0,00=0 = (1+a)z—(x+ay+c)?=0

of
oa =0

of
ac_o

xtay+c=0

=

4)
3)

=
=

of

Let ¢ = ¢(a). Using f(x, y, 2, a, ¢(a)) =0, 3
o

(1+a%»z-(x+ay+od(a)?=0,2az-2(x+ay+d)) (y +¢'(a) =0,

where ¢ is any arbitrary function.
@1) We have 22(p?+q¢?+1)=1.
This equation is of the form g(z, p, q) = 0.
Let z = G(u), where u = x + ay be a solution of (1).

e _dsou_ds
p_ax Cdu ox  dx

2 2
1 = zz((g—z) +(a§—z) +1]=1

dz )Y 1
(1+a2)(d—) :—2—1

u z

_%
%

Let

2az—-2(x +ay +c¢)=0

—2xtay+tc)=0

20z—-200)y=0 = 2az=0 = z=0.
This is the singular solution, because z = 0 also satisfies (1).

=0, the general solution is given by

Integrating, we get

=
(1+a?% (1-2z%=(x+ay+c)
This is the complete solution.

Let f(x,y,2z a,¢)=0+a)d(1—-2%—(x+ay+c)>

of
El
fix,y,2a,¢)=0
of
Fol
of
Pl

=

2a0(1 —2%) —2(x +ay +c¢)y  and

=

0 =

0 =

4 =
B = 2a(1-29-20)y=0

xtay+c=0

—J1+a? y1-22 =u+c, where ¢ = by/1+a?

A+ad Q-2 —-(x+ay+c)?=0

2a(1 —2%) - 2(x +ay +c)y =0

—2(x+tay+c)=0

Partial Differential
Equatins of the
First Order

(2
(3

(4 NOTES

(1)

e du_ dz
du

ay Zaa.

of

=—2@x+ay to)
dc

(2
(3

(D)
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Partial Differential = 201-29)=0 = 1-22=0 = 22-1=0.
Equations (PDE) .. . . 9 .
This is the singular solution, because z? — 1 = 0 also satisfies (1).

NOTES Let ¢ =¢(a). Using flx,y, 2z a,c) =0, g—z =0, the general solution is given by

(1+a*)(1- z%) - (x +ay +0(a))* =0, 2a(1 - z%) - 2(x + ay + 0(2))(y + ¢'(a)) = 0,
where ¢ is any arbitrary function.
(111) We have p(l—qg?) =q —-2). (D
This equation is of the form g(z, p, q) = 0.

Let z = G(u), where u = x + ay be a solution of (1).

0z _dz du dz _az_d_za_u_ dz

=22 22 gnd g=—= =g
Py " du o dx Ty T dny Ydu
2
1 = d—zl—az(d—z) :ad—z(l—z)
du du du
dz
= E_O (2)
d 2
or 1-a? (i) =a(l -2 ..(3)

(2) = =z =c. This is not a complete solution because it does not contain two
arbitrary constants.

dz 2 l-a+az
3 dz) _1l-a+az
3 = (du) 2
Let d_z:1/1—a+az
du a
(1—a+az)2dz= du
a

(1-a+az)’? u

Integrating, we get W = +b
= 2J1-a+az =u+ab
= 4(1-a+az) = (x +ay + c)?, where c = ab.
This is the complete solution.
Let fx, v,z a ¢)=41—a+ az) — (x + ay + ¢)?
9 9
I =4(-1+2)—-2x +ay +¢)y and I =—2x+ay+o
oa dc
fx,y,2,0,¢)=0 = 41 —-a+a2)—(x+ay+c)?=0 (@
of
. =0 = 4-1+2-2(x+ay+c)y=0 ...(D)
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o
oa

g—izo = —2x+ay+c)=0 ...(6)

(6) = x+ay+c=0
) = 44-1+2)-20y=0 = 4-1+2=0
= —-1+z=0 = z=1

(4) = A1 —-a+a(l) —(0)2=0
= 4 =0, which is impossible.

There is no singular solution. Let ¢ = ¢(a). Using f(x, y, z, a, ¢(a)) = 0 and

=0, the general solution is given by 4(1 —a + az) - (x +ay + ¢(a))? =0, - 4 + 4z

-2(x tay +0¢(a)) (y + ¢’(a)) =0, where ¢ is any arbitrary function.

StepI. Take z=G(u), where u=x+ ay.

Step II. By putting p =Z—z and g=a Z—z, the given equation reduces to an
u u

Step III. For singular solution, eliminate a and b from the equations : f = 0,

Step IV. For general solution, take b = ¢(a), where ¢ is any arbitrary

WORKING STEPS FOR SOLVING g(z, p, q) =0

ordinary differential equation of first order. Let its solution be f(x, v, z,
a, b) = 0. This gives the complete solution of the given equation.

oo,
Jda b

of

function. The equations : f=0, - 0 constitute the general solution.
a

£ N =

EXERCISE C
Solve the following partial differential equations :
pr+agi=z 2. 222+ @ +2)=1
p?+pq =4z 4. pz=1+¢
z=pq 6. 9%z + ¢ =14
PP+ q*=3pgz,z>0 8. pP+q*=27z
4(1 + 2% =9z* pq 10. 2 = 22p*(1 — p?).

Answers

C.S. 41 +ad)z=(x+ay+c)?

S.S.z2=0

GS. 41+ a)z—(x+ay+ 0@)2=0,8az —2(x+ ay + ¢(@)(y + ¢'(@)) =0

C.S. 1+ a?>(1-222) =4(x+ ay + c)?

S.8.1-222=0

G.S. (1 +a?(1 —222) —4(x+ay + 0(@)? =0, a(l — 222) —4(x + ay + ¢(@)(y + ¢'(@)) =0
C.S.1+a)z=(x+ay+c)?

S.S.z2=0

GS. (1+az-(x+ay+0@)?=0,z-2+ay+ @)y +¢'@)=0

Partial Differential
Equatins of the
First Order

NOTES
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Partial Differential
Equations (PDE)

NOTES

10.

C.S. 2% — 222 —4a® + 4a® log (z + 2% - 4a®) = 4(x +ay +b)

S.S. There is no singular solution.

G.S. 22 - zﬂzQ —4a® +4a® log (z + 1/22 —4a®) - 4(x +ay + 0(a)) =0,
az 9 2 4a® Yly) —
[ _ _ —y— =0.
ERw 2a log (z + w/z 4a ) y—0(@=0

(z + \/22 —4a?) \/22 - 4q?

C.S. 4az = (x + ay + b)?

S.S.z2=0

G.S. daz — (x +ay + 0(@)? =0, 2z — (x + ay + d(@)) (v + ¢’(@)) = 0.

C.S. (z+a??=(x+ay+b)?

S.S. No singular solution.

G.S. (z+ a?)? - (x+ ay + 0(@)* =0, 3a(z + a?)* — (x + ay + ¢(@))(y + ¢'(@)) =0
CS.(1+a*logz=3ax+ay)+b

S.S. No singular solution.

G.S. (1 + @®) log z — 3a(x + ay) — ¢(a) = 0, 3a? log z — 3x — Bay — ¢’(a) = 0.
CS.(1+a®2*2=8x+ay+b)?

S.S.z2=0

G.S.(1+a% 2% —8(x+ay+ 0@)®=0, a®22 -8+ ay + ¢(@)*(y + ¢’(@) = 0.
C.S.a(l + 2% =(x+ ay+ b)?

S.S.z22+1=0

G.S.a(l +2°) — (x+ ay + @)*=0, 1 + 2° = 2(x + ay + ¢(@)(y + ¢'(@)) =0
C.S.22=(x+ay+b?+a?

S.S.z2=0

G.S. 2" — (x+ ay + ¢(@)? —a* =0, (x+ ay + 0(@))(y + ¢'(@)) + a=0.

SPECIAL TYPE IV : EQUATIONS OF THE FORM
f,0¢ p) = fo(y; Q)

44  Self-Instructional Material

Consider the equation fi(x, p) = 1,03, Q).
Let each side of (1) be equal to a.
B2 fie,p)=a @2 [0 =a
Solving (2) for p, let p=F(x, a)
Solving (3) for q, let q=F,0, a).
Since z is a function of x and y, we have dz = g—zdx + g—zdy =pdx+qdy
X Y

dz=F,(x, a) dx + Fy(y, a) dy

Integrating, we get z= j F,(x,a)dx + j Fy(y,a)dy + b.

This represents the complete solution of the given equation.
To find the singular solution, let

&, 5, 2 a, b)zz—JFl(x,a)dx—J F,(y,a)dy —b.

(D)

. (3)



of of Partial Differential
Using f(x, v, 2z, a, b) = 0, =—=0,—=0, the singular solution is given by Equatins of the
.. . . da db First Order
eliminating a and b from the equations :
2~ [ Rx,a)de - [ Fy(y,a)dy -b=0, NOTES

i(j Fy(x,a)dx +j Fz(y,a)dy)=0and—1=0.
Jda

This is impossible, because — 1 # 0.
There is no singular solution.
To find the general solution, let b=¢(a), where ¢ is an arbitrary function.

Using f(x, vy, 2, a, d(a)) =0, g—f =0, the general solution is given by the equations :
a

z_j F,(x, a)dx—j F, (y,a)dy - 6(a)=0,

%(‘J F, (x,a)dx - | Fz(y,a)dy)—w(a):o.

SOLVED EXAMPLES
Example 5. Solve the following partial differential equations :
@) \/;—\/5+3x:0 @) py +gqx +pqg =20
@iii) pPy (1 +x2) = qx® (iv) px +q =p2
Sol. (1) We have \/E +3x= ﬁ NE))

This equation is of the form £, (x, p) = f,(v, @).
Let each side of (1) be equal to a.

Jp +3x=a @  YJg=a G)

2 = p=@-3x)?2 and 3) = q=da?
Now dz=pdx+qdy
dz = (a — 3x)? dx + a® dy

Integrating, we get z= J (@ -3x)%dx + J a’®dy +b.

_(a-3x)?
g = B-9X)

= +a2y+b.

This is the complete solution. There is no singular solution.

1
To find the general solution, let f(x, v, z, @, b) =z + 9 (@—3x)°—a?*y—b and b = ¢(a).

Using fx, v, z, a, (@) =0, % =0.

The general solution is given by the equations :

z +% (a-3x)%-a’y-¢(a) =0, %(a—3X)2 —2ay -¢'(a)=0,

where ¢ is any arbitrary function.
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Partial Differential (11) We have py +qx+pq=0.

Equations (PDE)
= py+qx+p =0 » L2 -_9 (D
.’)C+p y
NOTES This equation is of the form f,(x, p) = f,(y, q). Let each side of (1) be equal to a.
P__a L@ 22— G)
X+p y
2 = p= 9 and B) = qgq=—ay
l-a
Now dz=pdx+qdy
de =2 dx —ay dy
l1-a
i —J ax dx—jad+9
Integrating, we get =) 1, y ay 5
2 2
= @ x _a” b
l-a 2 2 2
= 2z=1ix2—ay2+b

This is the complete solution.
There is no singular solution. To find the general solution, let

flx,y,z,a, b)=2z— a1x2+ay2—b and b= ¢(a).

9
Using  fix, 9, 2 a, (@) =0, % =0,
The general solution is given by the equations :

a x?

2z - —— x> +ay2 - ¢(a) =0, ——2+y2 -0'(@)=0, where ¢ is any
1-a (1-a)
arbitrary func-tion.
(111) We have D2y (1 + x%) = ga?.
1+ 2 2 q

p"== (1
= X2 y (D

This equation is of the form  f,(x, p) = f,(y, @).
Let each side of (1) be equal to a.

1+x2 q
. pi=a (2 3= (3
Ja x _
2 = pZiﬁand B = qg=ay (Assuming a >
+x

0)
Jax

Let = W

Now dz=pdx+qdy
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Ja x

dz=——=—dx+aydy

- 1[1+x2

. 2 b
Integrating, we get z= ﬂj — 2 dx+ aj ydy+—.
2 Y1+ x2 2

2
= 22«/;\/1+x2 +%+%
= 2z=2x/;\11+x2+ay2+b.

This is the complete solution. There is no singular solution.
To find the general solution, let f(x, y, z, a, b) = 2z — 2\/;,/1 +x2 —ay*—band
b= o(a).
of

Using f(x, vy, z, a, 6(a)) = 0, P 0, the general solution is given by the

22—2«/;,11+x2 —ay?— 0@ =0, —2. 2}.1/1+x2 -y —¢@=0
a
or 2z- 2Ja1+x2 —ay’-0(a) =0,  1+x%+ay?+a ¢'@@) =0,

where ¢ is any arbitrary function.

equations :

(tv) We have px+q=p?
= pi—-px=gq (1)
This equation is of the form £, (x, p) = f,(v, @).
Let each side of (1) be equal to a.
pi-px=a (2 qg=a (3

1
2 = pl-px—a=0 = pZE(xi\lx2+4a)
Let p= %(xﬂ/xz +4a)

Now dz=pdx+qdy

dz = %(x+\lx2 +4a)dx +ady

2 [ 2
1|xyx"+4a 4
Integrating, we get z= _x4 +§ - +_2a log|x ++x%+4a ||+ay +b

or z:i(x2+x1/x2+4a)+alog‘x+1/x2+4a‘+ay+b.

This is the complete solution. There is no singular solution.
To find the general solution, let

1
fix, v, 2, a, b) =z — Z(x2+x\/x2+4a) —alog (x + Jx?+4a) —ay - b and

b= o(a).

Partial Differential
Equatins of the
First Order

NOTES
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Partial Differential o
Equations (PDE) ~ Using f(x, 5, 2, a, ¢(a)) = 0, £=0 , the general solution is given by the
equations :
1
NOTES z— Z(ac2 +xyx% +4a) —alog (x ++yx2 +4a) —ay — (@) =0,
1 4
_2-;—10g(x+ x2+4a)—a 2 0+ —F——
4 9 /x2 1 4q T x+4x7 +4a %/x2 + 4a
—y—¢'@=0
or z— i(}i{2 +xyx% +4a) —alog (x +x2 + 4a) — ay — §(a) = 0,

2a

x
——— +log (x+4x% +4a) + +y+¢'(a)=0,
2\x* +4a (x+\/x2 +4a)\/x2 +4a

where ¢ is any arbitrary function.

WORKING STEPS FOR SOLVING f,(x, p) = f,(y, q)

Step I.  Take each side of f,(x, p) = f,(v, @) equal to a.

Step II. Solve equations for p and q. Let p = F,(x, a), ¢ = F,(y, a). Write z=p dx
+ q dy and substitute the values of p and q. Integrate this
equation to get the complete solution.

Step III. Equation of the form f,(x, p) = f,(y, @) has no singular solution.

Step IV. Take the complete solution as f(x, v, z, a, b) = 0. Put b = ¢(a). The

)
general solution is given by the equations : f(x, y, z, a, ¢(a)) =0, % =0

EXERCISE D

Solve the following partial differential equations :
L p-g=x*+y* 2.x(1+y)p=y1+xq
3. pg=uxy 4. q = xyp?
5. x2p’=qy 6. g(p — cos x) =cos y
7. yp=2yx+logq 8.ﬁ+\/a=2x
9. pP-x=¢*-y 10. p—3x2=¢q¢*—y.

Answers

1
1. CS.z= g(x3 -y +alx+y)+b
S.S. No singular solution
G.S.z—%(x3 —y3)—a(x+y)—¢(a)=0,x+y+¢f(a)=0

2. CS.z=alogxy+talx+y)+b

S.S. No singular solution

G.S.z—alogxy—a(x+y)—o¢(@ =0,logxy+x+y+06'(a) =0
3. CS.2z=ax?+y%a+b

S.S. No singular solution

G.S. 2z —ax? —y%*la— ¢(a) =0, x%2 — y%/a? + ¢'(a) =0
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4. C.S. 2z =4+ax + oty2 +b

S.S. No singular solution

G.S. 2z — 4ax — ay® — dla) = 0, 2y/xla + y% + ¢’(a) =0
5. C.S.z=a logx +2Jay +b

S.S. No singular solution
G.S.z— x/glogx - 2\ay - ¢(a)=0, logx + ZJ;+ 2a 0(a)=0
1
6. CS.z=ax+sinx+ o siny+b
S.S. No singular solution
G.S.z—ax —sin x — 1 siny —¢(@) =0, x— iz siny+ ¢’(@) =0
a a

ay
e

7. CS.z=x*+ax+ — +b
a

S.S. No singular solution

ay e? (ay -1)
GS.z—x>—ax— eT —0(@)=0,x+ a—‘;} +¢o'(@)=0

8. C.S.z= %(Zx —a® +a’y +b
S.S. No singular solution
1
G.S. z— ¢ (20~ a)’ —a®y - 0(a)=0  4ay — @x - a)> + 2¢/(a) = 0
9. C.S.3z=2(x+a)*2+2(y+a)*2+0

S.S. No singular solution

G.S. 3z -2(x+ @)*? - 2(y + @)*? - (@) =0, 8\/x +a + 3y +a + ¢ (@ =0

2
10. C.S.z=ax+x>+ E(a +y)3/2+b

S.S. No singular solution

2
G.S.z—ax—x°— E(a"'y)S/z 0@ =0,x+ Ja+y +¢(@=0.

Partial Differential

Equatins of the
First Order

NOTES

USE OF TRANSFORMATIONS

At times the use of transformations helps a lot in changing a partial differential

equation to a much simpler form.

Remark. Keeping in view the scope of the present book, we are restricting ourselves
only to the finding of complete solutions of partial differential equations which are reducible to

0Z JZ
; = p== =
the form g(P, Q) =0, where X’ Q p

SOLVED EXAMPLES

Example 6. Find the complete solution of the following differential equations

with the help of transformations :
@) x*p® +y%q* == @it) x*p® +y*q® = 42*
(iii) pq = xmyn22l (il‘) (1 _ x2) yp2 + x2q = (.

Self-Instructional Material

49



Partial Differential Sol. (7)) We have x2p2 + y2q2 =z (D

Equations (PDE
quations (. ) 2 ( 3 )2 az
1 = — | +— =1
z \ox ay
NOTES 12 2 ~1/2
N 2 "2\ L[z a_z =1 )
1 ox yL oy

Let X, Y, Z be new variables such that dX=x1dx, dY=y'dy, dZ=z12dz.
By using integration, we have X =logx, Y=1logy, Z =2 Vz
_0Z dZ 9z dx 1 oz 22 %

T O0X dz ox dX Az ox T x b oox
0Z dZ 0z dy 1 9z zV2 5

and VN &y Faa Ty
L@ = P2+Q2=1 (3
This equation is of the form g(P, Q) =0
Let Z=aX+ o)y +c¢ ..(4)
be the complete solution of (3), where ¢(a) is some function of a.
0Z
4 = P—aX a dQ— —(I)()

@) = a*+©0@)?*=1 or o¢@)= J_r\/1—a
Let 0@ =41-a?,-1<a<l.
The complete solution of (3)is Z=aX + yJ1-a® Y +c.

The complete solution of (1) is 2z =a logx+41-a® logy+c, where a
and ¢ are arbitrary constants.

(11) We have x2p? + y2q? = 422, (D
2 (o), y2 (%) _,

Hn = 22 o 22 oy)
o) (o)

= x_l ax y_l ay =4 (2)

Let X,Y,Zbenew variables such that dX=x"1dx, dY=y'dy, dZ=z'dz
By using integration, we have X =logx, Y=1logy, Z=1log z

p_ 02 _dZ % dc 10 2z 0
OX dz ox dX 2z o x 1 ox
02 dZ dz dy 1 oz 27t oz
and :a_nggd_Yzzayzﬁa
@ =  P2+Q?=4 (3
This equation is of the form g(P, Q) =
Let Z=aX+ o)y +c¢ ..(4)
be the complete solution of (3), where ¢(a) is some function of a.
4 = P—g)zgza and Q— —(I)(a)

B) = o+ @@)?=4 or ¢(a)=i,/4—a2
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Partial Differential

Let o(@) = 4 - a?,—2<a<?2. Equatins of the
First Order
The complete solution of (3) is Z=aX + 4 -a? Y +c.
NOTES
The complete solution of (1) is log z = a log x + /4 — a2 log y + ¢, where a
and ¢ are arbitrary constants.
(#11) We have pq = x"y"z2l, (D
Z_zl — ia_z Z_l a_Z =1 (2)
= xmyn pPq = = x™ Ox yn ay -
Let X, Y, Z be new variables such that dX=x"dx, dY =y"dy, dZ =z"dz
xm+1 yn+ 1 zl—l
. . _ _ 7 = '
By using integration, we have X —— a1l 1-1
_ 02 _dZ %z dx_ ., 0z 1 _z'02%
- 0X  dz ox dX Tox  x™ x™ ox
U _dZ e dv_ 31 e
and V=@ Y dY Ty oy
2 = PQ=1 G))
This equation is of the form g(P, Q) = 0.
Let Z=aX+d@ Y +c ..(4)
be the complete solution of (3), where ¢(a) is some function of a.
0Z 0Z
(4) = P:a—Xza and Qza—YZq)(a)
3 = aol@=1 or ¢(a) = 1/a
The complete solution of (3) is Z = aX + 1 Y +c.
a
. .z a 1
The complete solution of (1) is = xmtly =yt ye where
1-1 m+1 n+1)a
a and ¢ are arbitrary constants and a # 0.
(tv) We have (1 —x?) yp2 + x2%q = 0. LD
1) = 1_26(8_2') +la_zz()
X ox y ay
2
= 1 @ +la_z:0 (2
x/y1-x2 Ox y 9y
Let X, Y, Z be new variables such that dX = a - dx, dY=ydy, dZ=dz
1-x
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Partial Differential By using integration, we have
Equations (PDE)
211/2 2
__1 Q=277 _ 1-x2, Y=2_| Z=2
2 1/2
NOTES 2 dz e d e e’ 1 %
T 0X dz ox dX ox o« x/\/l 2 0x
02 d7 9Jz dy oz 1 1oz
and === — . —=1.— —=——.
Y dz oy dY oy 'y yoy
2 = P*+Q=0 (3
This equation is of the form g(P, Q) = 0.
Let Z=aX+ oY +c ..(4)

be the complete solution of (3), where ¢(a) is some function of a.

_9Z _
==

B) = a+d@=0 or o) =-a’

0Z
d = —_—=
4 = P a and Q ¥ o(a)
The complete solution of (3) is Z = aX — a?Y + c.

2
The complete solution (1) is z = —ay1-x2 — a? y2 + ¢, where a and ¢ are

arbitrary constants.

EXERCISE E

1. pXx+q¥y==z

3. 2z=axi1/a2—1y+0,|a|21
1

5 z= a\/1+x2 +§a2y2+c

7. Z2=ax’+ 41-a? y*+c¢,~1<a<l

9 m-n Z(m—n—l)/(m—n) _

a
— (2x + sin 2x)
m-n-1 4 *

2
10. zzzaxz—[a?+3a+2]y2+c.
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Find the complete solution of t{he following partial (ﬂifferential equations :
9 o
o9

XMy 2l

=P

3. p2-g?==z 4. p>°+ ¢ =z
5. py (1 + a7 = ga* 6. zy%p = x(y* + 2°q?)
7. 2(%x*+ @ly? =1 8. x'p®+y%2q-2°=0
9. p™sec?™ x+ 2l q" cosec? y = zlm/(m-n) 10. z2p%y + 6zpxy + 22qx? + 4x2y = 0.
Answers

1L Vz=adx +1-a® Jy +¢-1<a<1 2.

1-(1/2)

2Z—=Lxm+l+;y”+l+c,a¢0
2-1 m+1 (n+Da

4. 2x/;=axi1/1—a2y+0y—13031
6.22=ax’+ {Ja-1y2+¢c a>1
8. xylogz+ay=(a?-1) x+ cxy

_  m\1l/n
M 2y —sin 2y) + ¢



CHARPIT’S GENERAL METHOD OF SOLUTION

If the given partial differential equation is not of any of the given special types, then
the given equation is solved by using Charpit's general method.

Let f(x,y,2,p,q =0 ..(D)
be the given partial differential equation of first order and non-linear in p and q.

Since z is a function of x and y, we have dz=p dx + q dy (2

The procedure is to first find an equation involving x, y, 2, p, q.

LetF(x,y, 2z, p,q =0 ..(3)

be the required equation involving x, y, z, p, q. The equations (1) and (3) are solved to
find the values of p and q. The values of p and q are substituted in (2) and is then
integrated to get the desired result.

Differentiating (1) and (3) partially w.r.t. x and y, we get
of of of dp Jf dgq
~ 4+ 2L ——+——"==0
ax+azp+ap ax+aq ox
of of  of op  Jf dq
L il gr——2+2L2=0
y 21 opay oqay
oF OoF oF op JF oq
Y —pH+——+—2=0
o zf  pox g o
oF oF  oFdp IFadg_,
dy

..(4)
..(5)
..(6)
(D

21" oy g ay

Multiplying (4) by g—F, (6) by g—f and subtracting, we get
/4 /4

OfoF _Fof (fOF ORI [ H Wy _ g
0qg dp dg Odp ) ox
oF oF

Multiplying (5) by > (7) by > and subtracting, we get
q q

dp dg dp dq

dy dg  dy dq
Adding (8) and (9), we get
a_fa_F_a_Fa_ﬂ(a_fa_F_a_Fa_fJ L OfOF _JFof (of OF oFof) _ .
ox dp ox dp |0z dp 0z Jdp dy dg dy dg \dz dg 0z Jdgq 7=

of OF OF of (of OF OF of of oF oF of Yop _
+ + =0 .9

% oq 9z dg dy

dg 9% 9%z _op

( o oxdy  oyox an

o , OF\OF (o OF\OF (o f)oF
= (W”E)%*(@*qazjaq*( Pop qaq) P
R AN AL I
op ) ox oq ) dy

This is a Lagrange equation of first order with independent variables x, y, z, p,
q and dependent variable F. The auxiliary equations of (10) are
dp dg dz dx dy dF 1)

o , o o, o _ o __o _oF _o o0

w P o Y P Y “p o

Partial Differential
Equatins of the
First Order

NOTES
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Partial Differential Any of the integrals of (11) satisfy (10). If any such integral involve p or q or

Equations (PDE) both, it can be taken as the assumed relation (3). Simpler the integral involving p or ¢
or both, that is derived from (11), the easier will be the solution of (1). Substituting
these values of p and ¢ in dz = p dx + q dy and then integrating, we find the required

NOTES solution.

SOLVED EXAMPLES

Example 7. Find the complete solution of the following partial differential
equaltions by using Charpit’s method :

(@) z=px +qy +p*+¢° @i1) 2% = pqxy
@tii) px + qy =pq @) (p?+q?)y =qz
@) p=(qy +2)>
Sol. (i) We have z=px+qy+p+ g (D
Let ftx, 5,2 p, 9 =2—px—qy—p*—q¢*

of of o _, of of
F pe % 1 o x—2p, o y-2q

Charpit’s auxiliary equations are
dp dg dz dx dy

o o o o _ o o _of _oF

w P o Yo Pop Y% " o

=
dp _  dq dz o dx _ dy
-p+p) -q+q1) -pl-x-2p)-q(-y-2¢) -x-2p -y-2q
_ d_p:d_q: dz dx dy

0 0 px+qy+2p2+2q2_—x—2p_—y—2q
First fraction implies dp = 0. Let p = a.

Similarly, let q=b.
Now dz=pdx+qdy .. dz=adx+bdy
Integrating, we get z=ax+ by +c.

Putting the value of zin (1), we getax + by +c=ax+ by +a?+b? or c=a%+
b2,
z = ax + by + a? + b2
This is the complete solution.

(i1) We have 22 = pqxy. (D
Let flx, 3, 2, p, @ =2° —paxy.
of of of of of
_— - , T =-— , — = 2 y, —T—=-— , ——=-—
o pqy dy pgx 9% 4 p qxy g pxy
Charpit’s auxiliary equations are
dp dq dz dx dy

o o o, o __o__o _o _of
ax+paz ay+qaz pap qaq op oq
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dp dgq dz Partial Dyj”emntial

= = = Equatins of the

—-pgy +p(22) - pgx+q(2z) —P(=qxy) —q(- pxy) First Order

_ dx _ dy
-(=qxy) —(-pxy) NOTES
. dp _ dg _ dz _ dx _ dy @
2pz - pqy 29z-pgx  2pqxy qxy pxy
@ xdp + pdx _ ydq +qdy
x(2pz — pgy) + p(qxy)  y(29z — pgx) +q(pxy)

. xdp+pdx:ydq+qdy d(xp):d(yq)

2xpz 2yqz

Integrating, we get log ap =log yq + a

=

Solving (1) and (3) for p and q, we get p = bz and q = bi
X

Now dz=pdx+qdy dz = b—zdx +idy
x by
= %——dx+idy
z x by

. 1
Integrating, we get log z=0> log x + A log y + log c.

z = cxP ylb

This is the complete solution.

xp = yqb? .

xp yq

.(3) (Putting a = log b?)

y

(ti1) We have px +tqy=Dpq. (D)
Let fx, ¥, 2 p, @) =px+qy—pq.
) ) ) ) )
£=p, £= ) a—’;=0, £=x—q, £=y—p
Charpit’s auxiliary equations are
dp _  dq dz _dx _ dy
of L of of  of _ o o _o _of
ox oz Jdy 0z op oq op oq
dp  dq dz o dx _ dy
- p+p(0) g+q(0) -plx-q)-qly-p) -(x-q) -(y-p)
dp dq dz _dx  dy
- P g -px-qy+2pq q-x p-y ()
dp _dgq
2 = 7=7 = logp=logg+loga = p=aq ..(3)

Solving (1) and (3), wegetp=0,q=0 or p=ax+y,q=

Casel.p=0,q=0

constants.

dz=pdx+qdy = dz=0dx+0dy=0 = z=c
This is not a complete solution, because it does not contain two arbitrary

ax +y
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Partial Differential
Equations (PDE)

NOTES
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+
Casell.p=ax+y,q= axry

a

dz=pdx+qdy = dz=(ax+y)dx+ (%)dy

=Y (qdx+dy) =Y g (ax + y)
a
2
Integrating, we get z = (axz;y) +b.
a
This is the complete solution.
@) We have (@2+q?y=qz (D
Let fx,y,2,p, @ =p*y+ q°y —qz.
of of o o Of J of
Too, L=p?+q?, T=- =2py, -
Ew 3y p *tq % p py q 2qy — z
Charpit’s auxiliary equations are
dp dq dz _dx dy
of o o o _ o o o _of
ox P oz Jdy 1 0z P op 1 oq op oq
- dp _ dq _ dz _ dx _ dy
0+p(-=q) p*+q®+q(-q) -pP(2py)-q(2qy-2) -2py —(2qy-2)
dp dq dz dx dy
- -2 . . - = (2
-rq p -2p°y-2¢°y+qz —2py z-2qy
dp _dgq dp _dq
— = =B = == I + I =
@ = T, e —q p = Pdptadg=0
P’ 4’ _a
Integrating, we get o + g=g O pi+aoi=a ..(3)

Solving (1) and (3), we get p = /@ —

z
[ 2 2 2
dz=pdx+qdy = dzzudx+ﬂdy

= zdz—aydy= yJaz? —a?y? dx
2 2
— d(%}—d(%}zwlazz —a%y? dx

= id(azz—azyz)z
2a

Integrating, we get 2./az% —a?y? =2ax+2b = az?

This is the complete solution.

(v) We have p=(qy+2)>2
Let f.y, 2z, p, @ =(qy+2)?—
0, %) 0,
I =0, f—2(y+2)q, —f=2(qy+2),
ox dy 0z

a

z

d(az —a?

2
az a a

—a?y? = (ax + b)2.

of

(D)

a—=2(qy+2)y
q



Charpit’s auxiliary equations are

Partial Differential

__dp dq dz _ dx _ dy Eq}«i;;lsntngrojetrhe
o, o o, f _p g of _of o
x P w Y% dp~ dq dgp  dq NOTES
dp _ dq _ dz _ dx
0+p2(gy+2) 29(qy+2)+q2(gy+z) -p-1)-q2y(gy+2) -(-1
_ dy
-2y(qy +2)
= dp = dq = dz = @ = L
2p(gy+2z) 4qlqy+2) p-2yq(qy+2) 1 -2y(gy+2) @
@ = _____ b A dv_
2plgy+2) —2y(qy+2) p Yy
Integrating, we getlog | p | +log | y | =log C
= lpy | =C = py=xC = py=a (Putting a = +
©)
p=aly

a
Putting the value of p in (1), we get — = (qy + 2)%.

= qy+2—\/7 = qQy= \/7 = q= 373
Yy

dz=pdx+qdy = dz:%dx+[\/§2 —Ede
Yy

§|

< |w

Yy
= ydzzadx+(£—z]dy = ydz+zdy=adx+£dy
5 e]
= d(yz) = adx + %dy
Yy

12
Integrating, we get yz=ax+ /g . % +b = yz=ax+2,/ay +b.

This is the complete solution.

WORKING STEPS FOR USING CHARPIT'S METHOD
Step I.  Shift all terms of the given equation to the left side and denote the left
side by f(x, y, 2, p, Q).

of of of o 9
Step II. Find—f—f—f—f—f

Step III. Write the Charpit’s auxiliary equations and substitute the values of
partial derivatives of f and simplify.

Step IV. Select any two fractions so that the resulting integral is the simplest
relation involving at least one of p and q. This relation and the given
equation are solved to find the values of p and q.

Step V. Put the values of p and q in the equation dz =p dx + q dy and integrate.
This gives the complete solution of the given equation.
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Partial Differential
Equations (PDE) EXERCISE F

Find the complete solution of the following partial differential equations by using
Charpit’s method :

NOTES 1. q:px+ q2 2. q= 3p2
3. pP-ylq=y*—«* 4. pxy +pq +qy =yz
5. 2(z +px +qy) = yp* 6.2z+p2+qy+2y2=0
7. q=px+p 8. 2xz — px®> —2gxy + pg =0
9. pA+g»)+(b-2q=0 10. (p2 + ¢?)x = pz.
Answers
1. z=(@—-ad)logx+ay+b 2.z=ax+3a%y+ b
[2_ 2 2
3. z=u+a—sin_1£—a——y+b 4. (z—ax) (y + @) = beY
2 2 a 'y
ax az
5. yz——+—2:b 6. 2(a—x)?2+2z2+y3)=b
y 4y
2 [2
+4
7. z:—%i i x4 ? +alog (x +yx% +4a) [+ ay +b

8. z=ay+bix?-aq) 9. 2Jc(z -b)-1 =x+cy+a

10. az? - a*x? = (ay + b)2.

Hints

y(z —ax)

4. p=a = q= aty

z—-ax dz —adx
dz=pdx+qdy = dzzadx+udy = =7 dy.
a+y z—ax a+y
d d
5. Charpit’s auxiliary equations implies ﬁ =— ;y or py>=a
a z ax a®
Also dz=—2dx+ ——-—t—7 dy

y Yy oy 2

1 2
= @dz+zdy)—a [—dx—xiy]—a—sdyzO,
y y 2y
1
6. dz=(a—v dv- 22+ 2" +(a—x)dy

Multiplying by 2y, we get (2y? dz + 4yz dy) = (2y*(a — x) dx — 2y(a — x)* dy) — 4y> dy.
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4. HOMOGENEOUS LINEAR
PARTIAL DIFFERENTIAL
EQUATIONS WITH CONSTANT
COEFFICIENTS

STRUCTURE

Introduction
Partial Differential Equations of Second And Higher Order

Homogeneous Linear Partial Differential Equations with Constant
Coefficients

Some Theorems

General Solution of Homogeneous Linear Partial Differential Equation
(D, D)z = 0 with Constant Coefficients

General Solution of Homogeneous Linear Partial Differential Equation
(D, D)z = F(x, y) with Constant Coefficients

Particular Integral of f(D, D)z = F(x, y)

Particular Integral When F(x, y) is Sum or Difference of Terms
of the Form x™y"

Particular Integral When F(x, y) is of the Form f(ax + by)
General Method of Finding Particular Integral

INTRODUCTION

Till now we have been discussing the methods of solving partial differential
equations of the first order. A partial differential equation of the first order involves,
only the first order partial derivatives (p and q) of the dependent variable z. Now we
shall consider the solution of partial differential equations of order higher than one.

PARTIAL DIFFERENTIAL EQUATIONS OF SECOND AND
HIGHER ORDER

We know that the order of a partial differential equation is the order of the
highest partial derivative occurring in the given partial differential equation.

Homogeneous Linear
Partial Differential
Equations with Constant
Coefficients

NOTES
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Partial Differential

3 2
Equations (PDE) 0°z 07z + % 0z

For example, Eve) +2— oy =x? + y is a partial differential equation of order

NOTES 3. For the sake of simplicity, iandi are denoted by D(or D) and D’(or D)

X

respectively. Thus, the above dlfferentlal equation can also be written as

(D% +2DD" + D)z =x?+yoras (D?+ ZDXDy+Dy)2—x2+y‘

922 0z 0z 0z 0z

Remark. DD’z stands for and not for =~ -=~. The product 57 -5 is denoted as
iy ey Y

D2z)([D’z).

HOMOGENEOUS LINEAR PARTIAL DIFFERENTIAL
EQUATIONS WITH CONSTANT COEFFICIENTS

We know that a partial differential equation is called linear if the dependent
variable and its partial derivatives occur only in the first degree and are not multiplied
together. A linear partial differential equation of order n is of the form

n n- 1 n-1
( o'z Ala—z+ ...... +A a—zJ (Boa o +Bn_1a—zJ

o axn—lay n ay o 1 ayn—l
0z 0z
+ + | M—+N + Pz =
...... ( ™ ayJ Pz=F(x, y)
where the coefficients A, A;, ... N, P are constants or functions of x and y. If the
coefficients Ay, A, ... , N, P are all constants then such a differential equation is

called a linear partial differential equation with constant coefficients.

In a linear partial differential equation, the orders of various partial derivatives
occurring in the equation may or may not be equal. In case the orders of all partial
derivatives involved in the equation are same then it is called a homogeneous linear
partial differential equation and otherwise it is called a non-homogeneous linear
partial differential equation.

A homogeneous linear partial differential equation with constant coefficients is

oft,heformAOaZ+A1 ai e +An£=F(x,y),
ox™ ox™ ™ "dy ay"
where A, A, ... , A are all constants.
Consider the following partial differential equations :
%z . 0%z 3% . 0%z 9%z
(1)4a 5 W+W:ex (1,1,)8—2—%=costOSZy
2 2
@) (D® —2D2D’ —DD2 + 2D¥)z = sin & @) 8_ o’z + % _ z=e*
oxdy 9y
(v) (2DD’ + D2 —3D)z = 3 cos (3x — 2y) L) r—s+ 2q —z = x%y?
(V17) xyr + x%s — yt = x3e? (viit) r + (y/x)s = 15xy2

(ix) yt + xs + q = 8yx2 + 9y2.
Differential equations (7), (if) and (i17) are homogeneous linear partial differential
equations with constant coefficients.

Differential equations (fv), (v) and (vi) non-homogeneous linear partial
differential equation with constant coefficients.
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Differential equations (vit) and (viit) are homogeneous linear partial differential Homogeneous Linear

equations with variable coefficients. Partial Differential
. . . CoL . . . . . Equations with Constant
Differential equation (ix) is a non-homogeneous linear partial differential Coefficients
equation with variable coefficients.
NOTES

In the present chapter, we shall consider the methods of solving homogeneous
linear partial differential equations with constant coefficients.

SOME THEOREMS

Let f(D, D)z=F(x, y) be a linear partial differential equation with constant coefficients.
The function f(D, D’) is of the form

n n n n-1 n-l
(A035+A1—a i_zla Fooeen, +Angy—z]+(B u+ ------ +Bn—1%]
X 1 Yy

+ o +(Mg_i+N?_3;J+PZ

where A, A, ... , N, P are all constants.

Theorem 1. Let f(D, D)z = 0 be a linear partial differential equation
with constant coefficients. If u,, u,, ..., u  be m solutions of f(D, D)z = 0, then

prove that Z c;u; is also a solution of f(D, D')z = 0.
i=1

Proof. u, is a solution of f(D, D) 2=0 for 1<i<m.
fO,D)u,=0 for1<i<m

NOW f(D, D’)(Z Ciui] = 2 f(D, D,) (Clul) = 2 Cif(D, D,)ul = 2 Ci (O) = 0
i=1 i=1 i=1 i1
2 c;u; 1s also a solution of the equation F(D, D)z = 0.
i=1

Theorem 2. Let f(D, D)z = F(x, y) be a linear partial differential
equation with constant coefficients. If u is a solution of f(D, D)z=0and v
is a solution of f(D, D’) z =F(x, y), then prove that u + v is a solution of f(D, D)
z = F(x, y).

Proof. u is a solution of /D, D)z =0.

- AD, DYu =0 (D
v is a solution of (D, D)z =F(x, y).
- AD, D)o = F(x, y) )
Now fD, D) (u+uv)=£fD, D)Y)u+ f(D, D)v
=0+ F(x, p) (Using (1), (2))
=F(x, y).

u + v is a solution of f(D, D)z = F(x, y).
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Partial Differential

Equations (PDE) GENERAL SOLUTION OF HOMOGENEOUS LINEAR
PARTIAL DIFFERENTIAL EQUATION (D, D')z = 0 WITH

NOTES CONSTANT COEFFICIENTS

n n n
Let fD, D)z = A, g Z A, Iz A, TZ
X

=0 (1)

be a homogeneous linear partial differential equation with constant coefficients, where

A, #0.
(1) can also be written as AD"+ A DD + ... +A D" z=0
..(2)
Let (2) be equivalent to A [(D —m D)([D —m,D’) ..... O-mD)z=0 ..(3)
Treating D and D’ as variables, the equations (2) and (3) implies

D n D n-1 D D D
:A - I £ 7 I B -
AO(D') +A1(D') + . +An O(D’ mlJ (D’ mz) (D’ an

my, Mg, ... , m, are roots of the equation
Agm™+ A mmt+ +A =0. (D
The equation (4) is called the auxiliary equation of (2). This equation can be

obtained by putting D equal to m and D’ equal to ‘1’ in the operator of equation (2) and
equating 1t to zero.

The roots m,, m,, ...... , m, of the auxiliary equation may or may not be distinct.
Case 1. Roots are distinct.

Equation (3) shows that for 1 <7 <n, the solution of (D —m D’) z= 0 is a solution
of (3) and hence of (1).

DO-mD)z=0 = p-m;q=0
d. d dz
= a W % = dy+m.dx=0, dz=0
1 -m; O !
= y+tmx=c, z=c,
= 2= 0,y + mx). (Putting ¢, = ¢,(c,))
2=0,(y + mx), 2=,y + myx), ... ,2=0,(y + m x) are solutions of (1).
2=yt mx) + o,y +t mox) +...... +¢,(y + m,x) is also a solution of (1). Since
this solution contains n arbitrary functions ¢,, 0, ...... , 0., this solution represents the

general solution of the given equation.
Case II. Roots are not distinct.

Let m=my#m,# ... #m, . In this case, the solution of (1) can be written as
2= (¢1 + ¢2)()’ + mflx) o + ¢n()’ + m’nx)‘ ( m’l = m’z)
This solution contains only n — 1 arbitrary functions ¢, + ¢, 0., ...... 0,

This is not a general solution.
Using m; = m, in (3), we get, A [(D — mlD’)2 DO -m,D) ... DO -mD)z=0
...(5)
Equation (5) shows that for 3 <7 < n, the solution of (D —m D"z =0 1is also a
solution of (5) and hence of (1).
: z2=0,y+myx), 3<i<n isasolution of (1).
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. =0,y tmx) + . +0,(y +m,x) ...(6)
is a solution of (1).
The solution of (D — m ,D")?z = 0 is also a solution of (5) and hence of (1).

O-mD)z=0 = O-mD)YD-mD)z=0 (7
Let D -mD)z=u. ..(8
M = O-mDHu=0
= u=y,(y + m,x), where y, is arbitrary.
(7) = I)—mlq:%()”f mlx)
= ﬁ = dy = dZ (9)
1 -my wyi(y+mx)
O = dy+mdc=0 = y+mux=c
Taking the first and third fractions of (9), we get
dx = dz or dz=vy,(c)dx
W (c)
= <= Wl(C) x+d
= 2=xy,(y + mx) + Y, (y + myx)

...(10)  (Putting d = y,(c))
Combining (6) and (10),

2=xy (Y + mpx) Y,y + myx) + 0,(y + mox) + . +¢,(00 + m x)
is also a solution of (1).

Since this solution contains n arbitrary functions v, y,, 0., ...... , 0, , this solution
represents the general solution of the given equation.

Remarks 1. If the root m, of the auxiliary equation is repeated r times, then the corre-
sponding part of the general solution is ¢,(y + m,x) + x¢,(y + m x) + ... + 4719 (y+ m x), where
(O S , 0, are arbitrary functions.

2. The auxiliary equation of a homogeneous linear partial differential equation with
constant coefficients is obtained by putting D =m and D’ =1 in the operator of the equation and
then equating it to zero.

Exceptional Case.

If A,=0, A, #0, then equation (2) becomes (A, D" D"+ ...... +A D" z=0

or D'AD" 1+ AD" D'+ ..+ A D' " Hz=0 (1)
The solution of D’z = 0 is also a solution of (1).
o . .
Dz=0 = a—z =0 = z=¢(), where ¢ is arbitrary.
y
Similarly, if D" is a factor of the operator of the equation then the corresponding
part of the general solution is z = ¢, (x) + yd,(x) + ...... +y" 10, (x), where ¢, 0y, ...... .0, are

arbitrary functions.

SOLVED EXAMPLES

Example 1. Find the general solution of the following partial differential
equations :
0% 0% 0%
(i)ax_j_‘gﬁ”%y_j: Gi) 2r + 55+ 20=0
@) (D° - 6D2D + 11DD’2 - 6D"3) z=0 @Gv) (D*+D’*-2D°D"2)z=0
) (D°D’2 +D?D’?) z = 0.

Homogeneous Linear
Partial Differential
Equations with Constant
Coefficients

NOTES
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Partial Differential 922 92z 02z

Equations (PDE) Sol. (/) We have ax_z -8 w + 15 W =0
= (D?-8DD’+ 15D z=0 (1)
NOTES By putting D =m and D’ = 1 in the operator of (1), the auxiliary equation of (1) is
m?—8m + 15=0.
m=3,5

The general solution of the given equation is z = ¢,(y + 3x) + ¢,(y + 5x),
where ¢,, ¢, are arbitrary functions.

(11) We have 2r+5s+2t=0.

@2D2 + 5DD’ + 2D%) 2z = 0 (D
The auxiliary equation of (1) is 2m? + 5m + 2 = 0.
m=-1/2, -2

The general solution of the given equation is

z=0, (y - % x) +05(y — 2x), where ¢,, ¢, are arbitrary functions.

(#11) We have (D3 —6D?D’ + 11DD"? — 6D"%)z = 0. (1)
The auxiliary equation of (1) is m3 —6m? + 11m — 6 =0.
m=1,23

The general solution of the given equation is
z=¢,(y +x) +¢,(y +2x) +,(y +3x), where ¢, ¢,, ¢, are arbitrary functions.
(iv) We have (D*+ D"* —2D?D?%)z=0 (D
The auxiliary equation of (1) is m* + 1 —2m? = 0.
m?-12=0 or m=1,1,—1,—1.
The general solution of the given equation is
z=¢,(y +x) + x¢,(y +x) + ¢,(y - x) +x¢,(y - x),
where ¢,, ¢,, ¢, 0, are arbitrary functions.
() We have (D?D’2+ D2D"®)z=0. (D
1n = DZD*D + D)z =0
The part of general solution corresponding to the factor D' is ¢,(x) + yd,(x).
The auxiliary equation of D2(D + D)z =01is m?(m + 1) =0
m=0,0,-1
The part of general solution corresponding to the factor D?(D + D) is
05y + 0.2) + 20,y + 0.3) + 05y + (= D).
The general solution of the given equation is
z=¢,(x) + y9,(x) + ¢,0) +x¢,(y) + ¢5(y - x),

where ¢, ¢,, 95, ¢,, ¢ are arbitrary functions.

WORKING STEPS FOR SOLVING PROBLEMS
Step I. Express the given equation in terms of D and D’.

Step II. Put D =m and D’ = 1 in the operator of the equation and equate it to
zero. This is the auxiliary equation of the given equation. Solve the
auxiliary equation.
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Step III. If m.is a distinct root then the corresponding part of the general solution
is ¢(y + mx). If m, is a root repeated r times then the corresponding
part of the general solution is ¢,(y + m; x) + x0,(y + m, x) +
+x71o (v + m; x).

If D7 1s a factor of the operator of the equation then we put D = m and
D’ = 1 in the other factor of the operator and the part of the general
solution corresponding to D” is taken as ¢,(x) + yo,(x) +
+ .y 1, (%).

Step IV.

Homogeneous Linear
Partial Differential
Equations with Constant
Coefficients

NOTES

EXERCISE A
Find the general solution of the following partial differential equations :
2 2
1. r=d% . B_;' - B_;' =
ox oy
2 2 2
a_z_ 07z _a_z =0 4. (D2 —4DD’ + 4D 2=0
ox oxdy 9y
5. 2br—40s+161=0 6. (D°+2D?D’—=DD? -2D%) 2z=0
7. (D*-3DD2+2D%)z=0 8. (D> +D2D'-6DD?) z=0
3 3 3
9. (D*-2D2D)z=0 1o.a—§—7a—22+68—§=0
ox 0xdy oy
11. (D3 -3D2D'+3DD2-D%)2=0 12. (D2D' - 3DD? +2D®) 2=0
13. (D*-2D°D’'+2DD? -D%2z=0 14. ©?D+ D% z=0.
Answers
1. z=¢,(y + ax) + ¢,(y — ax) 2. z=0,(y + ) + 0,(y — %)
8. z=0,(y+ (1 +{2)0 + 0,y + (1 - {2)%) 4. z2=0¢,;(y + 22) + 20, (y + 2x)
4 4

5. z=0, (y+ng+x¢2 (y+ng 6. z=0,(y + ) + 0,(y — %) + 0,(y — 2x)

7. z=0,(v t )+ x0,(y + ) T 030y — 2) 8.2=0,( 1 0,y + 2x) + ¢,y — 3)

9. z2=0,» 1t x0,() + 95y + 2x) 10. z=¢, (v + ) + 0,y + 2x) + ¢, (y — 3w)
11 2= 0,0y + 2 + 0,0y + ) + 2%0,(y + ) 12. 2= 0,0 + 0,0y + ) + 0,y + 2%)
13. z= ¢1()’— X‘) + ¢2(.}’ + X‘) + ’C%()’ + X‘) + x2¢4(y + X‘)
14. z= ¢1(x) + y%(x) + y2¢3(x) + ¢4(y - X‘)

GENERAL SOLUTION OF HOMOGENEOUS LINEAR
PARTIAL DIFFERENTIAL EQUATION f(D, D)z = F(x, y)
WITH CONSTANT COEFFICIENTS

Let fD, D) z=F(x, y)

be a homogeneous linear partial differential equation with constant coefficients.
Let u be the general solution of f(D, D") z=0.
fD,DYu=0

Let v be a particular integral i.e., a particular solution of f(D, D") z = F(x, y).

fD, D) v=F, y)

(D)

(2

. (3)
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Parn'al‘Diﬁ”emntial Now, f(D, D)wu+v)=f(D, DYu+ f(D, D)v =0+ F(x, y) = F(x, )
Equations (PDE) (Using (2) and (3))
u + v is a solution of f(D, D)z = F(x, y). Since u is the general solution of the

NOTES equation f(D, D)z = 0, it contains arbitrary functions equal in number to its order.
The solution u + v of the equation f(D, D)z = F(x, y) also contains as many

arbitrary functions as the order of f(D, D)z = F(x, y).
u + v is the general solution of the equation f(D, D)z = F(x, y).
The general solution u of the equation f(D, D)z =01s called the complementary
function (C.F.) of the equation f(D, D)z = F(x, y).

The general solution of the equation f(D, D')z = F(x, y) is obtained
by adding the general solution of the equation f(D, D)z = 0 to any particular
integral of the equation f(D, D')z = F(x, y).

PARTICULAR INTEGRAL OF f(D, D)z = F(x, y)

Let fD, DY)z=F(x, y) ..(1)
be a homogeneous linear partial differential equation with constant coefficients.

1
The inverse operator W of the operator f(D, D’ is defined by the
identity ’

1
fD, D) (W F(x, y)J =F(, y)
1
W F(x, y) is a particular integral of the equation (1) because

fO, D) ( F(x, y)) =F(x, y) = R.H.S. of (1).

1
f(D,D)

D, D) F(x, y) is a particular integral of the equation f(D, D)z

=F(x, y).

PARTICULAR INTEGRAL WHEN F(X, Y) IS SUM OR
DIFFERENCE OF TERMS OF THE FORM x™y"

If F(x, y) is sum or difference of terms of the form x™y", then the particular

integral F(x, y) of the differential equation f (D, D)z =F(x, y) is obtained by

_ 1
f(D,D’)

expanding f(D—lD’) in an infinite series in ascending powers of either D or D’. The
particular integrals obtained in the above mentioned two methods may not be identical.
Any of the two particular integrals may be used. If m < n, then it is advisible to expand

. 1
_ in ascending powers of D and in case n <m, then we should expand ———
fD,D") fMD,D")
in ascending powers of D’.
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SOLVED EXAMPLES

Example 2. Find the general solution of the following partial differential
equations:

@) (2D2 — 5DD’ + 2D'2)z = 24(y — x) @) r +(a+b)s +abt =xy.
Sol. (i) We have (2D2 - 5DD’ + 2D"?) z = 24(y — x).

(D)
The A.E. of (1) is 2m? — 5m + 2 = 0.
m=1/2, 2.
1
CF. = ¢1(y *3 x) +0o(y +2x).
NOW, PI = ZDZ _5DD’ + ZD,Z 24()/ — x)
-1
1 5D’ D2
= 1-| 2= - 24(y —
2D? ( (ZD D? B V=
24 5D’ D'?
= 1+ —- +.onnee -
2D2( (2D DZJ ](y ©
12 5 x%y 30
=—|(y-x)+—@D+0]| = e gy |
Dz((y x) 2D() ) 12[2 6 +D3()
3
= 6x2y—2x3 +30.?=6x2y+3x3‘
Using G.S. = C.F. + P.1., the general solution of the given equation is
Z=¢1(Y+%XJ+¢2(Y+2X)+6x2y+3x3,
where ¢, and ¢, are arbitrary functions.
(11) We have r+ (a +b) s+ abt=xy.
0%z 0%z 0%z
= —+(a+b +ab— =
" (a+b) axdy a %’ xy
= D2+ (@+b) DD’ +abD?) z=xy (D
The A.E. of (1) is m?2+(@+bym+ab=0.
g m=-—a,—b
C.F.=0¢,(y — ax) + ¢,(y — bx).
1
Now, PI =

D®+(@+5) DD +DZ ¥

Using G.S. = C.F. + P.1., the general solution of the given equation is

a+bx4
24 ’

1
2= §,(y - ax) +dy(y ~ bx) + £ Xy -

where ¢, and ¢, are arbitrary functions.

Homogeneous Linear
Partial Differential
Equations with Constant
Coefficients

NOTES
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Partial Differential

Equations (PDE) EXERCISE B
Find the general solution of the following partial differential equations :
(D2 + 3DD’ +2D?) z=2x+ 3y 2. (D2-2DD’ + D?) z=12xy
NOTES 5 , o 2 2TY2) 5 — 22
(D= -DD’-6D") z=xy 4. D* - a*D?) z=x
(D% —6DD’ + 9D"?) z = 1242 + 36xy 6. (D2 —2DD’ — 15D"%)z = 12xy.
Answers
— 73,3 2 — 3 4
1. z—¢1(y—x)+¢2(y—2x)—gx +§xy 2. z=0,(y + 0) + 20,y + x) +2x°y + x
1 3 1 4 1 4
3. z=0,(y—2x%) +¢,(y + 3x) + Ex y+ﬂx 4. z=0,(y + ax) + ¢,y — ax) + Ex
5. z=0,(y+ 3x) + x¢,(y + 3x) + 10x* + 6x%y 6. 2=0,(y — 3x) + ¢,(y + 5x) + xt + 2x%y.

PARTICULAR INTEGRAL WHEN F(x, y) IS OF THE
FORM ¢(ax + by)

Theorem. If f(D, D’) be a homogeneous function of D and D’ of degree n,

then the particular integral of f(D, D)z = ¢(ax + by) is given by

1
m H ...... j o(v) dv dv ...... dv, where v = ax + by, provided f(a, b) # 0.

Proof. We have D’¢(ax + by) = a’97(ax + by),
D’¢(ax + by) = b*¢"(ax + by)
and DD’ s¢(ax + by) = a’b*0"*9(ax + by).

fD, D) ¢(ax +by) = fla, b) ¢ (ax + by)
(- f(D, D’ is a homogeneous function of degree n)
Dividing both sides by non-zero constant f(a, b), we get
o(ax + by)

! _ ()
f(D} D ) f(a, b) - q) (ax + by)
By definition of the inverse operator f(D, D’), we have
; (n) _M
f(D,D) 0" (ax +by) = @b
= f(TlD,)qﬂn)(v) = f(al, b) 0(v), where v = ax + by.

Replacing ¢™(v) by ¢(v), we get

f(D—lD’>¢(v) ) f(al b) [[ o [o@dvav.....dv, where v = ax

+ by.
On the right side, the function ¢(v) is to be integrated n times w.r.t. v, which is
also the degree of the homogeneous function f(D, D).

1 1
PL= g5 by O@X Y= ps [[ e [0 avav......av,

where v = ax + by, provided f(a, b) = 0.
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Exceptional Case. If f(a, b) =0, then bD —aD’ must be a factor of f(D, D) Homogeneous Linear

because ba —ab = 0. Let the factor bD —aD’ be repeated r times, where r> 1. The value Partial Differential
Equations with Constant
of Coefficients
1 x” NOTES

o(ax + by) is given by bl o(ax + by).
r.
1 x'
(bD —aD/)* P(@x+by) =357 d(ax +by).

(bD -aD")"

SOLVED EXAMPLES

Example 3. Find the general solution of the following partial differential
equations :

(@) (2D? - 5DD"+ 2D’ z = 5(y — %)
@)r+s—2t=(2xc+y)"?
@i1) (D° — 4D?D’+ 4DD’?) z = 6 sin (3x + 2y)
(iv) (D° — 6D2D’+ 11DD’2 — 6D9) z = 70

Sol. 1) We have (2D? —5DD’ + 2D’ 9z = 5(y — x). LD
The A.E. of (1) is 2m? —bm + 2= 0.
: m=1/2, 2

C.F. = ¢1(y +%xJ + 0y (y +2x).
1

PL=59p2 spp12D? 7 " ~@
y-x=ax+by = a=-1,b=1
Also f(D, D) = 2D2 — 5DD’ + 2D’2.
: fla,b)=f(=1,1)=2(- 1)* =5 (1) +2(1)*=9#0
1
2) = Pl.=——— || 5udvdv, where v=y—x
(2) f(a,b)” vdvdv, w v=y

v
6
Using G.S. = C.F. + P.1., the general solution of the given equation is

1 v? 5 5 3
s [ Ugp=2 L _ 2 ()3
9 -[2 ’T9 500 Y

_ 1 5 vox)?
z—¢1(y+2xJ+¢2(y+2x)+54(y x),

where ¢,, ¢, are arbitrary functions.

(it) We have r+s—2t=2x+y
2 2 2
= (D% + DD’ — 2D"?) z = (2x + y) /2 ..(1)
The AE.of (1)is m?+m—-2=0.
m=-21
C.F.=0,(y —2x) + 0,(y + x).
PI = ! 2x + y)12 (2)
T D'+DD-2D? Y

2x+y=ax+by = a=2b=1.
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Partial Differential Also, f(D, D) =D?%+ DD’ —2D"2.

Equations (PDE) fla, by = 2, 1) = @)% + (1) — 2(1)* = 4 % 0.
1
L@ = PI = Y2 dvdv, where v=2x+y
NOTES f(a,b) Il
1 2v3/2 1 2 v5/2

1
== == 2 (2x+y)P2
) 3T s T Y

Using G.S. = C.F. + P.1., the general solution of the given equation is

z=¢,(y-2x) +d,(y +x) + 1—15 2x +y)*?, where 0,, ¢, are arbitrary functions.
@11) We have (D? —4D2D’ + 4DD"?) z = 6 sin (3x + 2y). (D
The A.E. of (1) is m? —4m?+ 4m = 0.
: m=0,2 2

C.F. =0,y + 0.x) + 0,(y + 2x) + x0,(y + 2x)
=0, + 0y(y + 2x) + x94(y + 2x)
1
D? - 4D?D’ + 4D
3x+2y=ax+by = a=3b=2.

PI = D2 6 sin (3x + 2y) ..(2)

Also, fD. D) = D* — AD?D’ + 4DD",
f(a, b) = f(3, 2) = (3)” = 4(3)*(2) + 4(3)(2)* = 3 # 0.
1
2 PI = i here v =3x + 2
2 = el ” 6 sin v dv dv dv, where v = 3x + 2y

:%.6” —cosvdvdv =2 J (-sinv)dv

=2 cos v=2cos (3x + 2y).
Using G.S. = C.F. + P.1., the general solution of the given equation is
z=¢,(y) + ¢,(y + 2x) + x¢,;(y + 2x) + 2 cos (3x + 2y),
where ¢,, ¢,, ¢, are arbitrary functions.

(iv) We have (D? —6D?D’ + 11DD? — 6D"?) 2 = p5x+6y, ..(1)
The A.E. of (1) is m®—6m?+ 11lm—-6=0
: m=1,23
CF.=0,(0+1.%) + 0,(y + 2x) + ¢,(y + 3u).
1
PI = by o)

D? - 6D?D’ + 11DD’2 - 6D"3
bx+6y=ax+by = a=5b=6.

Also, AD, D) =D?—6D2D’ + 11DD’2 — 6D

f(a, b) = f(5, 6) = (5)® — 6(5)2(6) + 11(5)(6)? — 6(6)°> =—91 = 0.

1
2 PlL=—— Y'dvdvdv, wh =Hx+6
2 = f(a,b)-[-[-[e v dv dv, where 1 x + 6y
1 v 1,1,
:—_91”6 dvdv= aje dv= ae
:_ie5x+6y‘
91
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Using G.S. = C.F. +P.1., the general solution of the given equation is

+x) + + 1
z=¢,(y +x) + ¢,(y + 2x) + ¢,(y + 3x) - o1 e5x+6y
here ¢,, ¢,, ¢, are arbitrary functions.

Example 4. Find the general solution of the following partial differential
equations :

@) (D3 — 4D?D’ + 4DD’?)z = 4 sin (2x +y)

@1) (D°— 7DD’ 2 — 6D’ %)z = x2 + xy? +y° + cos (x — y)
Gii) (D% — 4D?DY + 5DIY 2 — 2D73) 2 = *25 + (y + x)1I2
@v) (D2 - 7DD’ 2 — 6D’ %)z = sin (x + 2y) + 5™,

Sol. 1)) We have (D3 —4D?D’+ 4DD’2) z =4 sin (2x + y). LD
The A.E. of (1) is m® —4m? + 4m = 0.
: m=0, 2,2
C.F. =0,y + 0.x) + 0,(y + 2x) + x0,(y + 2x).
1
PI = 4 sin (2x +y) ..(2)

D3 — 4D?D’ + 4DD"?
2x+y=ax+by = a=2,b=1.

Also, f(D, D) = D? — 4D2D’ + 4DD"2.
fla, b) =12, 1) = (2)* = 42)*(1) + 42)(1)* = 0.

D3 — 4D2D’ + 4DD’? = D(D? — 4DD’ + 4D’?) = D(D — 2D’)?
m.%élsin(%wry) (+D=2,D'=1= D-2D"=0)
B 1
- (D-2D)?

1 4 (- cos (2x + y))
T (D-2D)%" 2

2 = PIlL=

J4 sin (2x +y) dx*

cos (2x + y)

=2 p_9D)?
2

=2 cos 2x+y) (=+ bD—aD’=(1)D —2D’'=D —2D")

_x
T (D2 2!
=—x2 cos (2x + ).
Using G.S. = C.F. + P.1., the general solution of the given equation is
z=¢,(y) + ¢,(y + 2x) + x¢,(y + 2x) - x% cos (2x +y), where ¢, ¢,, ¢, are arbitrary
functions.

(1) We have (D3?—7DD”2—-6D") 2z = x2 + xy2 + y° + cos (x — y). (D
The A.E. of (1) ism®—-Tm —6=0.
= m=—-1,-2,3

CF. = 0,0y + (- D) + 0,0y + (- 2) + 0,y + 3).

1 .
*Alternatively, D 4sin Qx+y) = %J‘ 4sinvdv, where v=2x+y

=—2cos U=—2cos 2x+y).

Homogeneous Linear
Partial Differential
Equations with Constant
Coefficients

NOTES
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Partial Differential 1

Equations (PDE) PI = D? — 7DD — 6D (% + xy? + 2 + cos (x —y))
= 1 (% + xy? + y°) + 1 cos (¥ —y).
NOTES D3 -7DD’? - 6D’? D3 -7DD’? - 6D’3
Now, 1 (2 + xy? + 5%

D2 —-7DD’? - 6D’3

-1
/2 /3
:D—ls{l—(7]]))—2+6 ]]))3 ]:l (x? +xy2 + %)
/2 /3
:]:)—13{1+(7]:)]:)2 +6]';3J+ ...... :((x2+xy2+y3)

1 7 6
:ﬁ(x2 +xy2 +y3)+§(2x+6y)+ﬁ(6)

5 4.2 3,3 6 5 6
o - AR A P, § N A T
60 24 6 360 20 720

5 6 1 5 7 5 1 4 2 1 3 3
= —x® + ="+ —xy+— += ‘
2% "0t T2 Y T oa¥ Y Tg*Y
1
Also D% _ 7DD — 6D’ cos (x —y)
= 1 cos (x —y)
D+D)D+2D)D-3D) oY
1 1

= D+D (D+2D)D-3D) cos (x —y)

(+D=1,D'=—-1 = D+D'=0)
_ 1 1
D+D (1+2-1))(1-3(-1)

)” cosvdvdv, wherev=x—y

11 1 (1
DD 4 "0 D+D"(4C°s(x y)j
4 D+ Y YT T o)

1
4 (—nr1!

cos (x —y) (Note this step)

cos(x—-y) (- bD—aD’'=(C DD —()D'=—D-D)

1 xcos (x —y)

5 6,1 5 7 5 1 42 1 33 «x
= —x"+—x" +— +— += + = -
P.L 72x 60x 2Oxy 24xy 6xy 4cos(x y).
Using G.S. = C.F. + P.1., the general solution of the given equation is
5 6,1 5 7 5 1 4.2 1 33
= —-x)+ -2x) + + 3x) + X + X" +— — —
2= 0, (y — %) +,(y — 2%) + 4,y +3x) + 75 60 tgoX Y T XY tgXV

+ ; cos (x —y) , where ¢, ¢,, ¢, are arbitrary functions.
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@) We have (D?—4D?D’ + 5DD"? — 2D"®) z = %% + (y + x)12.

(D)
The A.E. of (1) is m® —4m? + 5m — 2= 0.
: m=1,1,2
CF.=0¢;(0+1.0)+x0,(y+1.x) + 0,y + 2x).
1
_ (ey+2x+( +x)1/2)
Pl =55 4p?D 4 5DD? - 207 Y
_ 21 ey+2x 21 (y_%x)yz
D-D")*(D-2D") DO-D)*(D-2D") :
1 y+2x 1 1 2x+y
Now, 2 p = s 2 €
(D-D")* (D-2D") D-2D" (D-D")
(- D=2D'=1 = D-2D'=0)
= 1 . 1 2” e’ dvdv, wherev=2x+y
D-2D" (2-1)
_ 1 2x+y _ xl 2x+y:x62x+y
- D-2D’ ! 1! :
(v bD —aD’=(1)D - 2D’ =D - 2D’)
1
( +x)1/2 _ . (x+ )1/2
Also‘p 2 _ap) ° D-D)2 D-20
(- D=1,D'=1 = D-D'"=0)
= 1 5 - 1 J‘vmdv,wherev:x+y
D-D)* 1-2(1)
3/2
_ 1 2._v :—g.;z(x+y)3/2
(Db-D") 3/2 3 (D-D)
2 3/2
=——. + -+ bD—aD’=(1)D -1)D’'=D —
3 g Y (- bD—aD’= (D — (1)

D)

1 5 3/2
- —x“(x+y)
3 Yy

Pl = xe?**) - 1

2 3/2
—Xx (X + .
3 (x+y)

Using G.S. = C.F. + P.1., the general solution of the given equation is

z=¢,(y +x) +x¢,(y +x) +¢,(y +2x) + xeZX*tY _
where ¢, 9,, 0, are arbitrary functions.

(1) We have (D3 —7DD’2 —6D"?) z =sin (x + 2y) + 3%, LD
The A.E. of (1) is m® —Tm —6 = 0.

m=-—1,-2,3
CF. =0,y + (- D3) + 0,0y + (~ 22) + 0,y + 3).

1
PI =
D2 - 7DD’? - 6D’3

1 _» 3/2
— X X +
3 x+y)””,

(sin (x + 2y) + €3*Y)

1

= sin (x + 2y) + 1
D+D)D+2D")D-3D") D+D)D+2D")D-3D")

3x+y

Homogeneous Linear
Partial Differential
Equations with Constant
Coefficients

NOTES
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Partial Differential 1

i Now, sin (x + 2
Equations (PDE) ow (D+D)D+2D)D-3D) in (x + 2y)

:(1+2)(1j4)(1 6) .m sin v dv dv dv, where v = x + 2y

NOTES = —i”‘ —cosvdvdv =iJ‘ sin v dv -1 (—cos ) :—icos (x +2y).
75 75 75 75
1 3x+y
Also DD’ \D+2D'(D-3D")
1 1 3x+y

" D-3D (D+D’)(D+2D)
(+ D=3,D=1 = D-3D'=0)

= 1 1 'Ue”dvdv h y=3x +
T D-3D 3+1)(3+2) » Wherev=ory
3 1 i 3x+y_ xl eSx+y
~ D-3D"" 20 L1 20
(- bD—aD’=(1)D -3D"=D - 3D")
_ixeSxﬂ/
20

Using G.S. = C.F. + P.1., the general solution of the given equation is

1 1 <
2= 4,7~ %) + ,(y ~ 2%) + §y(y + 3x) — o cos (x+2y) + o xe™ Y,

where ¢,, ¢,, ¢, are arbitrary functions.

EXERCISE C
Find the general solution of the following partial differential equations :

1. (D2+3DD"+2D?) z=2x+ 3y 2. (D2+2DD' + D2z =2+

3. (D2—2DD’ + D?) z = e+ 4. (D? — 4D?D’ + 4DD™) 2z = cos (2x + 3y)

5. s=e 6. 4r—4s+1t=16log (x + 2y)

7. 2r—s—3t=>5e"e¥ 8. (D2 -5DD’ +4D"%) z =sin (4x +y)

9. (D?-2aDD’ + a2D?) z= g(y + ax) 10. 2D? —-5DD’ + 2D?) z=5 sin (2x+y)
11. (D? - 2D2DY — DD2 + 2D73) 2 = ex* 12. (D3 — 4D2D’ + 4DD") z = sin (y + 2)
13. (D? —4D2D + 4DD’?) 2 = cos (2x + ) 14. (D2 = 3DD’ + 2D’2) 2 = 27 + ¥ + cos (x

+ 2y).

Answers
1 3 2x + 3y

L o2=0,(y — %) + 0,(y — 2%) + %<2x+3y) 2. 2=0,(y —x) + x0,(y — %) + 55
8. 2=,y + )+ xb,(y +x) + ox*+2y

z2=0,) + 0,(y + 2x) + x0,(y + 2x) — 3—12 sin (2x + 3y)
5. z=0,(0) + 0,(y) + e
6. z= ¢1(y+%xJ+x¢2 (y+%x}+2x2 log (x + 2y)

3 _ 1

7. z=01(y—x)+ 09 (y +§xJ+ xe® Y 8. Z=¢1(y+x)+q)2(y+4x)—§x cos (4x + y)
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2
9. z=0,(y+ax) + x0,(y + ax) + %g(y + ax)

10. z= ¢1(y + %x} + do(y + 2x) —gx cos (2x + y)

11. z=¢1(yfx)+¢2(y+x)+¢3(y+2x)—% xexty

2
12. z=0,0) + 0,(y + 2%) + 20, (y + 2x) — xT cos (2x + y)

2
13, 2= 0,() + 0,0y + 20 + x0,(y + 2) + % sin (2x + y)

1 _ 1
14. z:¢1(y+x)+¢2(y+2x)+ﬁe2x y—xex+y—§cos(x+2y)‘

GENERAL METHOD OF FINDING PARTICULAR
INTEGRAL

Let fD, D)z =F(x, y) (1)

be a homogeneous linear partial differential equation of order n with constant
coefficients.

Let my, m,, ...... , m_ be the roots of the auxiliary equation of (1). Here some of
the roots may be repeated.
1
= —F(x, y)
1
= ’ ’ ’ F(x’ y)
(D -mD)D-myD)...... (D -m,D")
We first study the method of evaluating ﬁ g(x, y) for some constant m
-m
and function g(x, y).
Lot S )
et 2= D-mD 8,y
D —mD") z=g(, y)

= p —mq =g, y)

Lagrange auxiliary equations are % = ﬂ = dz ..(2)

1 -m gxy)
dy
2 = dxzm = dy+t+mdex=0 = y+mx=a
d;
2 = dx = ad
8(x, y)
= dz=g(x,a—mx)dx = ZZJg(x,a—mx)dx
1

After evaluation of right side, the constant a is replaced by y + mux.
Now we come to the evaluation of a particular integral of (1).

Homogeneous Linear
Partial Differential
Equations with Constant
Coefficients

NOTES
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Partial Differential 1

Equations (PDE) P.I of (1) (D-mD')D-myD')...... D-m,D) (x, y)
1 1 1
= DD DomD D D,F(x,y)
NOTES ™ 2 i

This right side is evaluated by repeated application of the formula (3).

SOLVED EXAMPLES

Example 5. Find the general solution of the following partial differential
equations:
@) (D?+2DD"+D’2)z=2cosy—xsiny
L%z 0% dx y
() o2 ay2 y2 %2
%z 0%z
@11) 2w W =tan®x tany — tan x tan’ y

@v) (D? + DD’ — 6D2) z =x% sin (x +y).

Sol. (1) We have (D2 + 2DD’ + D% 2= 2 cos y — x sin y. (1)
The A.E. of (1) 1s m2+2m+1=0.
: m=—1,-1
CF. =,y + (= Dx) + 20,y + (= D) = 0,y — %) + x0,(y — %).
PI = 1 (2cos y —xsin y)
7 D? +2DD’ + D2 Y Y
1
= 2 - 1
(D+D’)(D+D’)( cos y —x sin y)
:D:D,J‘[2cos(a+x)—xsin(a+x)]dx
O+D'=D-mD" = m=-1. . y=a—-mx=a-+x)
:D+1D,[2sin(a+x)—{—xcos(a+x)+sin(a+x)}]
:D+D,[sin(a+x)+xcos(a+x)]: ~[sin y + x cos y]

- J (sin(a +x)+x cos(a +x))dx

O+D'=D-mD" = m=-1. . y=a—-mx=a-+x)
=—cos (@ +x) +xsin (a+ x)+cos (@+x)
=xsin (@ + x) =x sin y.
Using G.S. = C.F. + P.1., the general solution of the given equation is
z = ¢,(y — x) + x¢,(y — x) + x sin y, where ¢,, ¢, are arbitrary constants.
82_2 4 %z 4x y

11) We have -4 —=— -
( ) axz ayz yZ x2
4x y
= (D2—4D’2)2:y_2_x_2 ..(1)

The A.E. of (1) is m?—4=0.
: =_22
CF. = ¢1()’ + (_ 2)’0 + %()’ + 2%’) = ¢1()’ - 2%’) + %()’ + 2%’)
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pr-_ 1 [4x_y|_ 1 4x_y
D?-4D"%|y* x%) (D+2D)D-2D")(y? x*

B 1 J‘ 4x _a—2x dx
T D+2D (a—2x)2 x2

D-2D"=D-mD’

1 J‘(_Za—4x—2a_i+ngx

= m=2 y=a—mx=a-— 2x)

" D+2D (a-2x)? x2 x

1 2 2a a 2
:—j - + P
D +2D’ a-2x (a-2x)?% x%2 «x

1 _ a a
= ! - 2x) + +—+21
D+2D’_og(a *) a-2x x ogx}
= 1 logy+L2x+y+2x+210gx
D+2D" | y x
:; logy+210gx+2—x+l+3
D+2D" | y  x
:J(log(a+2x)+210gx+ 2x +a+2x+3de
a+2x x
O+2D’=D-mD" = m=-2 y=a—mx=a+ 2x)
:J(log(a+2x)+210gx+ 2x +£+5de
a+2x x

=10g(a+2x).x—J .xdx+2(logx).x—J z.xdx
x

a+2x

+J 2x dx + alog x + 5x
a+2x

=xlog (@ +2x) + 2x+a)logx+3x=xlogy+ylogx+ 3x.
Using G.S. = C.F. + P.1., the general solution of the given equation is
z=¢,(y - 2x) + ¢,(y + 2x) +xlog y +ylogx + 3x, where ¢,, ¢, are arbitrary
functions.

0%z 9%z
(111) We have P W = tan® x tan y — tan x tan® y.
= (D2 —=D"?) z=tan® x tan y — tan x tan® y (D
The AE.of (1)is m2—-1=0.
: =—1.1
CF. =00+ = Dx) + o, (v + L) = ¢, (y — %) + ¢, (v + ).
1

Pl =72"pz (tan® x tan y — tan x tan®y)

B 1
- D+D)D-D)

(tan® x tan y — tan x tan? y)

Self-Instructional Material
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Partial Differential 1 3 3 d
Equations (PDE) = DiD [tan® x tan (@ — x) — tan x tan® (a — x)] dx

O-D'=D-mD" = m=1 . y=a—-mx=a-x)

1
D+D’
1
D+D’

NOTES = J tan x tan (a — x) [sec? x — 1—sec? (a — x) + 1] dx

J tan (a - x) . tan x sec? x dx

—J tan x . tan (a — x) sec? (a—x)} dx

1 tan? x

= tan (@ — x).
D+D 2

+%J sec? (a — x) tan? x dx

tan %(a - x) 1

+tan x. —J sec? x tan? (a — x) dx
2 2

= ;[tan (@ - x)tan? x + tan x tan? (a — x)
2D +D")

- J (sec? x (sec? (a—x)—1) —sec? (a - x) (sec?® x — 1) dx}

= ;[tan (a@ - x)tan? x + tan x tan? (a — x)
2D +D")

- J (sec? (a — x) —sec? x) dx}

1
= 2D+D) [tan y tan? x + tan x tan? y + tan y + tan x]

-1 [tan y sec? x + tan x sec? y]
2D +D")

= %J‘ [tan (a + x) sec? x + tan x sec? (a + x)] dx

O+D'=D-mD" = m=-1. . y=a-mx=a+tx)

[tan (a+x)tan x — j sec? (a + x) tan x dx + j tan x sec? (a + x) dx]

DO | =

1
= E tan y tan x.

Using G.S. = C.F. + P.1., the general solution of the given equation is

1 . .
z=0,(y—-x) td,(y +x) + 2 tan x tan y, where ¢,, ¢, are arbitrary functions.

(tv) We have (D% + DD’ — 6D"?) z= a2 sin (x + y). (D

The AE. of (1) ism?2+m —6=0.
: m=-3,2

CF. =00 + (= 3)x) + 0, (y + 20) = 0,(y — 3%) + 0,y + 2x).

1
_ 2 g
P.I1 D? + DD —6D” x“sin (x +y)
1

= 2 o1
D+3D)D-2D) * Y
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1
 D+3D’

sz sin (x + @ — 2x) dx

O-2D=D-mD’ = m=2. -. y=a-mx=a-

B 1
" D+3D’

J x2 sin (a — x) dx

_ 2 —x0-12 - ]
_D+3D’[x cos (@ — x) J x cos (a — x) dx

2
D+3D’ [x cos (a — x) — (- 2x sin (a — x)+J‘ 2sin (a — x) dx):|

x2 cos(a—x)+2xsin(a—x)—2cos(a—x)]

D+3D’

D+3D’

[
[(x2 —2)cos (2x + y — x) + 2x sin (2x +y—x)}l
[

D+3D’ (x% = 2) cos (x + y) + 2x sin (x +y)}l

:J[(xz—2)cos(x+a+3x)+2xsin(x+a+3x)]dx
O+3D’=D-mD" = m=-3. . y=a-mx=a

[(x? - 2) cos (4x + a) + 2x sin (4x + a)] dx

Il
—

sin (4x + a) J‘ sin (4x + a)
_— | 2x.—=

) dx+j 2x sin (4x + a) dx

=(x%-2)

:l(xz—Z)sin(4x+a)+gj x sin (4x + a) dx

cos(4x+a)_J‘ 1 _cos(4x+a)
4 ’ 4

(x2—2)sin(4x+a)+g[—x

[N O N R N

(x2 —2)sin(4x+a)—%xcos(4x+a)+%sin(4x+a)

2
:(%—%Jsin@x+y—3x)—%xcos(4x+y—3x)
= ﬁ—E sin (x + )—§xcos(x+ )

4 32 Y7 .

Using G.S. = C.F. + P.1., the general solution of the given equation is

2

z=¢1(y—3x)+¢2(y+2x)+(X——Ejsm(x+y)—§xcos(x+y)
4 32 8

where ¢,, ¢, are arbitrary functions.

Find the general solution of the following partial differential equations :
1.
3.
5.
6.

EXERCISE D

r+s—6l=ycosx 2. D2+ DD’ -6D?) z=ysin x
r—s—2t=@Qx%*+ xy —y?) sin xy — cos xy 4. D2-DD'=2Dz=(y—-1) e*

O -

3DD"2 —2D") z =cos (x + 2y) — e’ (3 + 2x)

(D? +2D2D = DD — 2D'3) 2 = (y + 2) €.

dx}

Homogeneous Linear
Partial Differential
Equations with Constant

2x) Coefficients
NOTES

+ 3x)
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Partial Differential
Equations (PDE)

NOTES

Answers
z2=0,(y+2x) + ¢,(y —3x) —y cos x + sin x 2.2=0,(y +2x) + ¢,(y — 3x) —y sin x —cos x
3. z2=0,(y+2x) + ¢,(y —x) + sin xy 4. 2=0,(y + 2x) + 0,(y — x) + ye*
5. z=¢1(y—x)+x¢2(y—x)+¢3(y+2x)+2—17sin(x+2y)+xey
6. z=0,(0+ 20+ 0,y — ) + ¢y — 2x) + yer.
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5. NON-HOMOGENEOUS LINEAR
PARTIAL DIFFERENTIAL
EQUATIONS WITH CONSTANT
COEFFICIENTS

STRUCTURE

Introduction

Non-homogeneous Linear Partial Differential Equations with Constant
Coefficients

Reducible and Irreducible Non-homogeneous Linear Partial Differential
Equations with Constant Coefficients

General Solution of Reducible Non-homogeneous Linear Partial Differentia
Equation f(D, D)z = 0 with Constant Coefficients

General Solution of Irreducible Non-homogeneous Linear Partial Differential
Equation f(D, D)z = 0 with Constant Coefficients

General Solution of Non-homogeneous Linear Partial Differential Equation
with Constant Coefficients

Particular integral of f(D, D)z = F(x, y)

Particular Integral When F(x, y) is Sum or Difference of Terms of the
Form x™y™

Particular Integral When F(x, y) is of the Form e®"t>
Particular Integral When F(x, y) is of the Form sin (ax + by) or cos (ax + by)
Particular Integral When F(x, y) is of the Form e®*® V(x, y)

INTRODUCTION

From the last chapter, we have been solving linear partial differential equations
with constant coefficients. In that chapter we found the general solution of only such
equations in which the orders of all partial derivatives involved in the equation were
same. In other words, we solved only homogeneous linear partial differential equations
with constant coefficients. In the present chapter, we shall learn the methods of finding
general solution of linear partial differential equations which are not homogeneous.

Non-homogeneous Linear
Partial Differential
Equations with Constant
Coefficients

NOTES
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Partial Differential

Equations (PDE) NON-HOMOGENEOUS LINEAR PARTIAL DIFFERENTIAL
EQUATIONS WITH CONSTANT COEFFICIENTS

NOTES A linear partial differential equation with constant coefficients is called a non-
homogeneous linear partial differential equation with constant coefficients
if the orders of partial derivatives occurring in the equation are not equal.

For example, the following partial differential equations are all non-homogeneous
linear partial differential equations with constant coefficients:
0z 0% "
@) a—w= e2xt3y
(1) 2DD’ + D2 — 3D’z = 3 cos (3x — 2y)
Gii) (D — 2D + 5)(D% + D’ + 3)z = 34 gin (x — 2y)

REDUCIBLE AND IRREDUCIBLE NON-HOMOGENEOUS
LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH
CONSTANT COEFFICIENTS

Let f(D, D’) z=F(x, y) be a non-homogeneous linear partial differential equation
with constant coefficients. This equation is called reducible if f(D, D) can be resolved
into factors each of which is of the first degree in D and D’.

For example, (D? — D’? + 3D — 3D’z = sin x is a reducible non-homogeneous
linear partial differential equation with constant coefficients because D? — D" + 3D —
3D’ = (D - D" (D + D’ + 3). A non-homogeneous linear partial differential equation
with constant coefficients is called irreducible if it is not reducible. For example (2D?
—D?+ D) z = x? —y is an irreducible non-homogeneous linear partial differential
equation with constant coefficients because (2D? — D2 + D) cannot be resolved into
linear factors in D and D’.

GENERAL SOLUTION OF REDUCIBLE NON-HOMOGE-
NEOUS LINEAR PARTIAL DIFFERENTIAL EQUATION
f(D, D')z = 0 WITH CONSTANT COEFFICIENTS

Let fO,D)z=(@D+b,D +¢))...... (@D+bD +¢)z=0 (D)
be a reducible non-homogeneous linear partial differential equation with constant
coefficients.

The factors on the left side of (1) may or may not be distinct.
Case I. Factors are distinct

Equation (1) shows that for 1 < ¢ <n, the solution of (@D + bD" +¢)z=01is a
solution of (1).

@D+bD" +¢c)z=0 = aptbqg=—cz
dx _dy dz )
= o b _—ciz ..(2)

82  Self-Instructional Material



2 = a,dy —b,dx=0 = ay—-bx=»x

Also, (2) = £=—&dx = logzz—&erlogM
a; i
= z= Me*Cix/ai = z= e*cix/ai ¢i (aiy _ blx) (Puttlng w= q)L()\’))

This is true only when a, # 0.
If b, # 0, then by taking IInd and IIIrd fractions of (2), we can show that

z=e "% ¢.(a,y — b;x) is a solution of (1).

z=e U g (ay —-bx), z=e P Oylagy —box), ...,

-c,x/a,
e

z= 0, (a,y - b,x) are solutions of (1).

z=e % ¢ (a,y -b;x) + e % ¢,(ayy —byx) +......

—eyx/
+e % ¢ (a,y-b,x)

is also a solution of (1). Since this solution contains n arbitrary functions ¢,, ¢, ...... ,
¢, this solution represents the general solution of the given equation. Here we have
assumed that a , a,, ...... , a, are all non-zero constants.

Case II. Factors are not distinct

Let the first two factors be same and all others distinct. In this case, the solution
of (1) can be written as z = ™™ (¢, + 05) a1y — byx) + ...... +e "% ¢ (a,y - b,x).

This solution contains only n — 1 arbitrary functions ¢,, ¢,, ¢,, ...... , 0.

This is not a general solution.
1 = (@D+bD +c)? (@D+bD +cy) ... @D+bD'+c¢)z=0
..(3)

Equation (3) shows that for 3 <i <n, the solution of (a,D + b.D"+ ¢,) z= 0 is also

a solution of (3) and hence of (1).

z=e % ¢ (a;y - bx), 3<i<nis asolution of (1), provided a, =0, 3 <i <n.

z=e Y% gu(agy —bgx) +...... +e "% ¢ (a,y—b,x) .4
is a solution of (1).
The solution of (a,D + b, D" + ¢,)? z= 0 is also a solution of (3) and hence of (1).
(@D+bD +¢)?2=0 = (@D+bD +c)aD+bD +c)z=0 ..05)
Let (@ D+bD" +c)z=u ...(6)
G = @D+bD+c)u=0

—cixlay

= u=e v (ay —byx)

where y, is arbitrary. We are assuming that a, # 0.

(6) = (111) + blq + 012 = e_CIx/al W1(a1y - blx)
= ap +bg=e Uy (ay - bix) —c,z
d.
- dx _dy_ - ad (T)
ay by e” Ny (agy —bix) - ¢z
N = a,dy—-bdc=0 = ay-bx=c

Non-homogeneous Linear
Partial Differential
Equations with Constant
Coefficients

NOTES
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Partial Differential Taking the first and third fractions of (7), we get
Equations (PDE)

d 1 —cix/a
= ey (agy — byx)  ¢12)
dx a4
dz Cq 1 _cxa
NOTES = —+—=z=—rc " yi(ay - bx) ..(8
dx a4 a,

This is a linear equation.
g
IF. =¢ ay — eclx/al
Solution of (8) is

1
2 - eclx/al :j a_e cxlaq \U1(a1y _blx).eclx/m dx
1

:iJ. wl(c)dx:Ll(C)_{_d
a a

cixlay _

= ze =z yi(ay —bx)+d
a

1

= 2eM = x 01(ayy — byx) + ¢ (ayy — byx)
(Taking 0, = 1 y;andd= (])2(0))
a

z=e 9% (x ¢,(ay —bx) + 0@y —bx) .9
Combining (4) and (9),

z= € (x ¢ (a,y - b,x) + d,(a,y - b,x))

+ e % 4. (agy — bgX) + e +e ™ (a y-b,x)-

Since this solution contains n arbitrary functions ¢,, ¢,, ...... , 0, this solution
represents the general solution of the given equation.

Remark. If the factor a;x+ by + ¢, is repeated r times, then the corresponding part of

the general solution is e ol (01(a1y = b1x) + x Pglayy —bx) + ... + a1 ¢ (ay — b,x), where
Op Oy e , ¢, are arbitrary functions.

WORKING STEPS FOR SOLVING PROBLEMS
Step I.  Express f(D, D) as the product of linear factors in D and D",
Step II. Corresponding to each non-repeated factor aD + bD” + ¢, the part of
G.S. is e ' ¢(ay —bx), if a # 0 or e~ '® ¢(ay —bx) if b = 0.

Step III. Corresponding to each repeated factor aD +bD’ + ¢, r times, the part of
G.S. 1s

e~ cxla Z 1o, (ay —bx),ifa#0or e " Z y' 1 y.(ay —bx),if b#0.
i1 i=1
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Non-homogeneous Linear

SOLVED EXAMPLES Partial Differential
Equations with Constant
Example 1. Find the general solution of following partial differential equations: Coefficients
(l) t+s+ q= 0 (H/) DD’(D — 2D’ — 3) z=0 NOTES
@ir) (DD +aD +bD’ +ab)z =0 @)r+2s+t+2 +29+z=0.
Sol. ) We have t +s +q =0.
OD+1D'+0D'+D+1)z=0..(1)

D?+DD’'+D)z=0 =

The general solution of (1) is
z=e 2 ¢, 0y —1x) + e ¢, (1ly — 1.x)

z =, (- x) + e oy (y - x),

=

or
where ¢, and ¢, are arbitrary functions.

Remark. ¢,(— x) is also a function of x and can also be written as y(x) for some arbitrary
function .
@) We have DD’(D -2D"-3) z=0. ..(D
= (1I.D+0D+0)(0.D+ 1D +0)D-2D"-3)z=0

The general solution of (1) is
z=e % ¢ (Ly — 0.x) + 21 9,0y — 1) + € ¢,(1y +

2.x)
z= ¢1(Y) + ¢2(_ X) + e3X ¢3(2X + Y)>

or
where ¢,, ¢,, ¢, are arbitrary functions.

(ti1) We have DD’ + aD + bD’" + ab) z= 0.
O+b)D'+a)z=0 = (AD+0D +b)0.D+1.D"+a)z=0
(D)

=
The general solution of (1) is
z=e ¢ (Ly—0.x) + @ ¢ 0.y — 1.x)
z= e—bx ¢1(Y) +e™ ¢2(_ X),

or
where ¢, and ¢, are arbitrary functions.
..(D

(1v) We have r+2s+t+2p+2q+z=0
— D2+ 2DD'+D2+2D+2D'+ 1) 2=0
= [(D+D)2+2D+D)+1]z=0

D+D'+1)2z=0

=

The general solution of (1) is
z=e 1 (0,(Ly — L.x) + x ¢,(Ly — 1.x))

z=e> (¢,(y - x) + X ¢,(y — X)),

or
where ¢,, ¢, are arbitrary functions.

GENERAL SOLUTION OF IRREDUCIBLE NON-HOMOGE-
NEOUS LINEAR PARTIAL DIFFERENTIAL EQUATION
f(D, D')z = 0 WITH CONSTANT COEFFICIENTS

ey

fO,D)z=0

Let
be an irreducible non-homogeneous linear partial differential equation with constant

coefficients.

Self-Instructional Material
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Partial Differential Let 2 = ceartby.
Equations (PDE) D7 D¢ 2 = D" D¥(ce™ ) = carbsed b = a7 b et

fD, D) z = fla, b) ce™*
2 = ce™"? is a solution of (1) if f(a, b) = 0 and the constant c is arbitrary. Let

NOTES
(a, b,) be one of infinitely many pairs satisfying f(a, b)) = 0.

z = c;e® % is a solution of (1) for each i.

The general solution of (1) is z = 2 c;e®*™PY where f(a;, b) = 0.
i1

Remark. For the above irreducible partial differential equation (1), the general solu-
tion has been written in terms of arbitrary constants.

WORKING STEPS FOR SOLVING PROBLEMS
Step I.  Express the given equation in the form f(D, D’) g(D, D’) z =0, where f(D,
D7) is expressible as a product of linear factors in D and D’ and g(D, D’)
1s irreducible.
Step II. Write the solution of f(D, D)z = 0 in terms of arbitrary functions.
Step III. Write the solution of g(D, D)z = 0 in terms of arbitrary constants.
Step IV. Add both general solutions to get the general solution of the given
equation.

Example 2. Find the general solution of the following partial differential

equations :
@MD*+D+D)z=0 @) (2D* - 3D’ +D?) z =0
@) (D+2D -3)(D?+D)z=0 @) (D’ +3D)? (D2 +5D+D’)z=0.
Sol. 1)) Wehave (D2+D+D")z=0. LD

D2+ D + D’ is irreducible
Let 2= ce® be a solution of (1).
(@%+ a + b) ce®tty =)

= a*+a+b=0 = b=—(@@*+a)

—_ 2 .
z2=ce® @YY where a and ¢ are arbitrary constants.

> 2
. The general solution of (1) is z = Ecie”‘iX @°+a)y  Ghere a, and ¢, are

i=1
arbitrary constants.
@) We have (2D*-3D?D’ +D"?) z= 0. ..
= @2D%2-DHD?-D)z=0

The factor 2D2 — D’ is irreducible.
Let z = ce®*® bhe a solution of (2D%2 —D") 2 =0.
2a%?—=b)ce®™ =0 = 2a2-b=0 or b=2a?
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Corresponding to 2D? — D’, the part of general solution of (1) is

i 2
a;x +2a;"y
E ce ¢ LR

i=1
The factor D? — D’ is also irreducible.
Let z = ¢’e“**®"Y be a solution of (D2 —D’) z= 0.
- @2 =0 eV =0
= a?-b'=0 or b =a*

5= c/ea'x +a’?y

, 2
it aly

’

Corresponding to D? — D', the part of general solution of (1) is 2 ¢
i=1

The general solution of (1) is  z= Z c e * T2 4 2 ¢,/ e ™4™ where
i=1 i=1
a, ¢, a;, ¢/ are arbitrary constants.
@11) Wehave (D +2D'-3)(D2+ D) z=0. (D
The factor D + 2D” — 3 is linear.
Corresponding to D + 2D” — 3, the part of general solution of (1) is

e (1y —2.x) i e3¢, (y — 2v).
The factor D? + D’ is irreducible.
Let z = ce®*® he a solution of (D2 + D) 2= 0.
(@% + b) ce®+ty =,
= a?+b=0 or b=—d?
ax —a’y

Z = ce

2
ax-a;"y

Corresponding to D? + D, the part of general solution of (1) is Zcie
i=1

The general solution of (1) is z = e*~ ¢,(y — 2x) + Zcieaix_aizy , where ¢, is
i=1
arbitrary function and a,, ¢, are arbitrary constants.
(iv) We have (D’ + 3D)? (D? + 5D + D%) z = 0. (D
The factor (3D + D’)? is linear repeated.
Corresponding to (3D + D")?, the part of general solution of (1) is
e 0% 0,3y — 1L.x) + x0,(3.y — 1.v), e, 0,3y — %) + x0,(3y — x).
The factor D? + 5D + D’ is irreducible.
Let z = ce®*® he a solution of (D2 + 5D + D) z = 0.
(@%+ Ha + b) ce®ty =0

= a*+ba+b=0 or b=—(a%+ ba)

5= cea.x—(a2+5a)y

~. Corresponding to D? + 5D + D’, the part of general solution of (1) is

=

2
Zcieaix—(ai +5a;)y 250

i=1

Non-homogeneous Linear
Partial Differential
Equations with Constant
Coefficients

NOTES
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Partial Differential
Equations (PDE) o The general solution of (1) is z = ¢;8y - x) + x ¢,y - Xx)

— — 2 . . . .
+ Zcieaix @"+52)y  where 0,, 0, are arbitrary functions and a,, ¢, are arbitrary
i1

NOTES constants.

EXERCISE A
Find the general solution of the following partial differential equations :
1. O+D'-1HD+2D"-2)z=0 2.O+1)DO+D' -1)z=0
3. (D?*-DD’'-2D)z=0 4. D2-D?%+D-D)z=0
5 OD-D-1HDO-D'-2)z=0 6. D2-DD’'+D’' -1)z=0
7. s+p—q—2=0 8. (D2-DD’-2D"?+2D +2D)2=0
9. %+&— az—§=o 10. (D-3D"-2)22=0
ox®  oxdy dy
11. O-D?z=0 12. 2D2-D?+D)z=0
13. O*+DD’+D+D’'+1)z=0 14. D-2D"-1)(D-2D?-1)z=0

15. (2D 3D’ +5)2 (D2 +3D) z=0.

Answers
1. z=¢e%,(y—x) + eX0,(y — 20) 2. 2= e7%9,(y) + €0,y — %)
or z=e",(y—x) + ¥,y — 2x)
3. z= ¢1(y) + e2x¢2(}’ + X‘) 4.z= ¢1(}’ + X‘) + efx%(}’— X‘)
5. z=e,(y+x)+e¥o,(y + x) 6. z=¢%0,(y) + e ¥0,(y + %)
7. z2=e,() + ey~ x) 8.2=0,(y —x) + e X,y + 2x)
9. z2=0,y +2x) + 0,(y - 3x) 10. z = e** 9,y + 3x) + 20, (y + 3x))
1. 2= Yl * o 12. ) ™% where 202~ b2+ a,=0
i=1 i=1

13. z= Zcieaix+biy , wherea?+ab.+a,+b+1=0
i-1
hnd 2
14. z=e Oy + 220 + zcie(l+2bi )x +b;y
i-1
> 2
15. 2= (0,2 + 3 + x0,2y + 32) + Y e T w3
i-1

GENERAL SOLUTION OF NON-HOMOGENEOUS LINEAR
PARTIAL DIFFERENTIAL EQUATION WITH CONSTANT
COEFFICIENTS

Let f(D, D) z=F(x, y) (D)

be a non-homogeneous linear partial differential equation with constant coefficients.

88  Self-Instructional Material



Let u be the general solution of f(D, D") z = 0.

fDO,DYu=0 ..(2)
Let v be a particular integral of f(D, D’) z = F(x, v).
fD, D) v="F,y) ..(3)

Now f(D,D) w+v)=fD,D)u+f(D,D)v=0+F(&, y =F(, y).

u + v is a solution of f(D, D) z=F(x, y). Since u is the general solution of the
equation f(D, D) z = 0, the solution u + v of the equation f(D, D) z = F(x, y) is the
general solution of the equation f(D, D’) z = F(x, y).

The general solution u of the equation f(D, D’) z=0is called the complementary
function (C.F.) of the equation f(D, D’) z = F(x, y).

The general solution of the equation f(D, D’) z = F(x, y) is obtained
by adding the general solution of the equation f(D, D)z = 0 to any particular
integral of the equation f(D, D')z = F(x, y).

PARTICULAR INTEGRAL OF f(D, D)z = F(x, y)

Let f(D, D) z=F(x, y) (1)

be a non-homogeneous linear partial differential equation with constant coefficients.

Since, f(D, D) [ F(x, y)} = F(x, y), the function ;F(x, y) is a

1
f(D,D") f(D,D")

particular integral of the equation f(D, D) z=F(x, y).

PARTICULAR INTEGRAL WHEN F(x, y) IS SUM OR DIF-
FERENCE OF TERMS OF THE FORM x™y"

If F(x, ¥) is sum or difference of the terms of the form x™y", then the particular integral

1 . . . . . .
W F(x, y) of the differential equation f(D, D) 2 =F(x, y) is obtained by expanding
W in an infinite series in ascending powers of either D or D’. The particular
inteérals obtained in the above mentioned two method may not be identical. Any one
of the two particular integrals may be used.

SOLVED EXAMPLES

Example 3. Find the general solution of the following partial differential
equations :

@) (D?-D" - 1)z =x% @) (D? - D2 - 3D + 3D’)z = xy.
Sol. 1) Wehave D2-D"—1) z=x%. LD
D% —D’ — 1 is irreducible.

=

X +b;
C.F.= ZCie” ”  wherea?-b,-1=0 or b,=a?-1
i=1

Non-homogeneous Linear
Partial Differential
Equations with Constant
Coefficients

NOTES
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Partial Differential oo

Equations (PDE) CF = zcieaix +(a? -1y ‘
i=1
1 9 1 9
NOTES PL=pr p 1" " "1io-p)"”
=— 1+ O =Dy
=—(1-DO'-D»+ D -D»H2—...... ) x%y

=—(1-D'+D?-2D'D?+ ...... ) x%y
=—(%y—x2+2y—4+0+ ... y=—ay+ a2 —2y+ 8.
Using G.S. = C.F. + P.1., the general solution of (1) is

> 2 _ .
z= Zcieai“(ai DY _ x2y + x2 -2y + 8, where a, and ¢, are arbitrary
i=1

constants.
(1) We have (D2-D2—3D + 3D) z = xy. LD
D2_DZ-3D+3D' =D -D)D+D —3)=(1.D— 1D +0)(LD + 1.D' — 3)
CF.=e ¢ (1y+1lx)+e 3o (Ly—1.0) =0,y +x) + e30,(y — x).

1

PL=D0"D)D+D -3 "

_i(l_D')‘l 1 1_(2+D’)
pl" D) T3 373 Y

+
3 3 9

Using G.S. = C.F. + P.1., the general solution of (1) is
z= ¢1(y + X) + e3X¢2(y - X)
2 2 3
Xy xy ox x 2 0
3| 2 3 38 6 9
where ¢,, ¢, are arbitrary functions.
Alternative method of finding P.I.

1

Pl =
D-D)D+D -3) "~
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Remark. In solving problems, the second method is found comparatively easier
straight forward.

EXERCISE B

Find the general solution of the following partial differential equations:

1. r—s+p=1 2.MD-D-DHD-D -2 z=x
3. s+tp—qg=z+uxy 4. D2 -DD'-=2D2+ 2D+ 2D") z=xy
5. (D2—D2+D+3D —2) z=a2y 6. DD+ D' —1)(D+3D' —2) 2= 22— 4xy +
Answers
L z=¢,(N+e*d,(y+x)+x 2.z=ex¢1(y+x)+ezx¢2(y+x)+§+
3. z=e" () e d,(0) —xy-—y+tx+1
4. z=¢1(y—x)+e*2x¢2(y+2x)+x?Ty—%—glc—Z %—%
5. z:€%¢ﬂy+@+em%@_xy_l(ﬁy+xy+§x2+§y+3x+2€
2 2 2 4
6. 2= 0,00+ 0y — %) + ¥ dy(y — 33) + 1—12 (2x3 — 1262y + 12xy? — 21x2 + 24xy + 3x) .

Non-homogeneous Linear
Partial Differential
Equations with Constant
Coefficients

NOTES

and

2y2.

3
4
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Partial Differential

Equations (PDE) PARTICULAR INTEGRAL WHEN F(x, y) IS OF THE FORM

eax-l-by

NOTES Theorem. If f(D, D') be a function of D and D', then
1 eXthy _ _1 e2**bY provided f(a, b) = 0.
f(D, D) f(a, b)

Proof. We have D"e®™ % = g7 e®@+by
Dseax+by — bseax+by
and DrDseax+by :arbseax+by‘

f(D, D') eax+by :f(a, b) eax+by

ax+by

Dividing both sides by f(a, b), we get f(D, D) m =@ tby

By definition of the inverse operator W, we have

1 axsby eax+by
f(D,D") f(a,b)
Remark 1. The above result is not true for any general function ¢(ax + by) of ax + by.
Remark 2. The method ﬁ ety — ﬁ €™+ ig applicable only when f(a, b) #
) a’

0. The case when f(a, b) = 0 will be discussed a little later.

SOLVED EXAMPLES
Example 4. Find the general solution of the following partial differential
equations :
@) (DD" +aD +bD’ + ab)z = em>mw @) (D2 + D + 4)z = e*.
Sol. 1) We have (DD’ + aD + bD’ + ab)z = gmx+ny. (D)

DD " +aD+bD"+ab=DOD +b)D"+a)=1.D+ 0D+ b)(0.D + 1.D" + a)
CF.=e® ¢ (1y—0x) +e @ ¢,0.y—Lx)=e 0,y +e ¥ ,(— ).

_ 1 mx+ny
Pl = DD Y aDsbD +ab © ~@
D=m,D’=n = DD +aD +bD’"+ab=mn+am + bn +ab
=m+bmn+a)#0 (Assuming m #—b, n # —a)

T m+b)n+a)

Using G.S.=C.F. +P.1, the general solution of (1) is

+
emxtny

= a-bx + o2y — +
z=e7¥ ¢,(y) +e™ ¢y(- x) m b mra)’
where ¢, and ¢, are arbitrary functions.

(1) We have D2+ D’ + 4) z= ™7, LD

D2+ D’ + 4 is irreducible.
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CF.= zcieaix 0 where a’+b+4=0
i=1
— icieaix—(ai2+4)y
i=1
1 e
Pl =——"—¢**"7 L2
D?+D' +4 @
D=4D'=-1 = D2+D' +4=4)>+(1)+4=19%0

c _ i 4x -y
2) =PIL= 19e

Using G.S. = CF. + PI, the general solution of (1) 1is

N (a2 1 :
z= E c; M= @Y - e4x-¥ where a, and c, are arbitrary constants.
: 19
i=1

EXERCISE C
Find the general solution of the following partial differential equations :
1. (D2—DD’-2D) z= ,2x+y 2. D2-D2+D-D)z= 253
3. D2—4DD’'+D—1)z=¢3*"2Y 4. (D2 DD’ — 2D + 2D + 2D) z = £25+3Y¥
5. D2-D2+D+3D —2)z=e*"Y 6. (D> —3DD’ + D+ 1) z= 2¥*37
Answers
1. z2=0.(y) + e ooy +x) - % e2xty 2. z2=01(y +x) + e F ooy — x) - % Q2 +3y

" amiby . 1 g
3. z= E ce®* T 4 = 3%~ where a2 —4ab.+a,—1=0
35 13 11 13
i=1

4. z=0;(y-x)+ e 2 do(y + 2x) — 1—10 e2x+3y

5. z=e 2 oy +x) +e* q)g(y—x)—iex_y

=

) ) 1
6. z= Zcealgﬁbly —7e2x+3y , where a? —3a.b. + a,+ 1 =0.
i=1

PARTICULAR INTEGRAL WHEN F(x, y) IS OF THE FORM
sin (ax + by) OR cos (ax + by)

Let the given partial differential equation be
f(D, D) z =F(x, y), where F(x, y) = sin (ax + by) (or cos (ax + by)).

1
Pl = W sin (ax + by) (or cos (ax + by))

This is evaluated by putting D? =—a?, DD’=-aband D’?=-b? provided the
denominator is not zero.

Non-homogeneous Linear
Partial Differential
Equations with Constant
Coefficients

NOTES
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Partial Differential
Equations (PDE) SOLVED EXAMPLES

Example 5. Find the general solution of the following partial differential
equations :

@) (D+D)YD+D —2)z=sin (x +2y)
@) (D? - DD’ — 2D’ 2 + 2D + 2D )z = e + sin (2x + ).
Sol. ) We have (D +D")(D + D’ —2) z=sin (x + 2y). (D)
= (1.D+1.D+0)(.D+1.D"—2)z=sin (x + 2y)
CF.=e % ¢ (ly—1x)+e 2 ¢ (ly—1.x)
C.F.=¢,(y —x) + e* ¢,y — ¥).
1
PL=ospmiD -2
Here a=1,b=2
: D2=—q2=—(1)2=-1, DD'=—ab=-(1)2)=-2,
D2=—-0p2=—(22=—4.
1

2) =PI = DD _20+D) sin (x + 2y)

1
- in (x +
D?+D?+2DD 2D oD SP @)

= 1 sin (x + 2y)
1-4+2(-2)-2D_2p W

1

e Gin(x+2
sDr2D 19 ST

2D +2D' -9
(2D +2D")% - 81

2D+2D" -9 .
=-— - — sin (x + 2y)
4D + 8DD’ + 4D’* - 81

_ 2D + 2D’ - 9

T 41D -8(1)(2) - 4(-4)-81
_2D+2D' -9
B 117

=—1—i7 [2 cos (x + 2y) + 4 cos (x + 2y) — 9 sin (x + 2y)]

:—1—17 [6 cos (x + 2y) — 9 sin (x + 2y)]

Using G.S. = C.F. + P.1., the general solution of (1) is

NOTES

sin (x + 2y) ..(2)

sin (x + 2y)

sin (x + 2y)

sin (x + 2y)

1
z=¢,(y - x) + e ¢,(y — x) -117 [6 cos (x +2y) - 9 sin (x + 2y)],

where ¢, and ¢, are arbitrary functions.
@) We have (D2 —-DD’—2D2+ 2D + 2D’) z = €23 + sin (2x + ¥). (D
D2 - DD’ — 2D + 2D + 2D’ = (D + D))(D — 2D’) + 2(D + D)
=M+D)D-2D"+2)=(1.D+ L.D’ + 0)(1.D — 2D’ + 2)
CF.=e % ¢ (Ly—1x)+e 2o, (ly—(-2)x)
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CF. = o,y —x) + e 2 O,y + 2x). Non-homogeneous Linear
1 Partial Differential

3 ; 3 B (e**3Y + sin (2x + ¥) Equations with Constant
D -DD’-2D"" + 2D + 2D Coefficients

1 2x+3y
= 2 ’ ’2 ’ €
D? -DD’ -2D%2 + 2D + 2D

1
D? - DD’ - 2D’2 + 2D + 2D’
_ 1 62x+3y
T (@2%-23)-203)% +22) +23)

1

T T2 -2 1 +2D+ 2D

PI =

NOTES

T sin (2x + y)

sin (2x + y)

=— iez’”sy +;sin (2x + )

10 2D + 2D’

_ L 2wy, D-D°

10 2AD? -D?)

-1 @2ty 4 _D-D" sin (2x + y)
10 2(-4+1)

— 1 e2x+3y _

sin (2x + y)

10
1 2x+3y _

% (2 cos (2x + y) — cos (2x + ¥))

~ 70 %cos(2x+y)‘
Using G.S. = C.F. + P.1., the general solution of (1) is
z=¢,(y-x)+e 2 ¢,(y +2x)- 1—10 eZx 3y _ % cos (2x +y),

where ¢,, ¢, are arbitrary functions.

EXERCISE D
Find the general solution of the following partial differential equations :
1. (D2-DD’+ D’ —1)z=cos (x+ 2y) 2. OD-D'-=1)(D-D"-2) z=sin (2x + 3y)
3. (D?-DD’-2D) z=sin (3x + 4y) 4. 2DD’ + D? - 3D") z= 3 cos (3x —2y)
5. (D—-D"?)z=cos (x—3y) 6. D2+ D)D-D"—D2) z=sin 2x+ ).
Answers

1. z=e" 9,0 T e g (y+ )+ %Sin (x +2y)
2. z=e"0,(y + )+ ¥ o,y + ) + 1—10 [sin (2x + 3y) — 3 cos (2x + 3y)]
8. z=0, +eX o,y + )+ 1—15 [sin (8x + 4y) + 2 cos (3x + 4y)]

4. z=¢,0+ p3l2 0,(2y — ) + 53—0 [4 cos (3x — 2y) + 3 sin (3x — 2y)]

hnd 2
5. »= zciebi x +by +é[sin (x =3y)+9cos(x —3y)]
12

=

— 2 2 1
6. 2= ) ce®tTHY 4 LTy 2 5 gin (2 + y) — 3 cos (2x + y)].
S S ENR ,
is is
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Partial Differential
Equations (PDE)

NOTES

PARTICULAR INTEGRAL WHEN F(x, y) IS OF THE FORM
e®*b V(x, y)

Let the given partial differential equation be
f (D, D) z=F(x, y), where F(x, y) = e="% V(y, y).

1
—— = Jaxtby
P.L FD.D) e Vix, y)

This is evaluated by using the formula :

Vx,y).

1 . ax+by V(X, y) — eax+by 1 :
f(DO,D’) fD+a,D +b)

1 +b;
Remark. If F(x, y) = e®*® and f(a, b) = 0, then we cannot write —,eax Y
(x, ¥) f(a, b) £(D,D)

1 eax+by

fla,b)
In such a case, we write
1 Xty — 1 (eax+by 1) = p@x+by 1 1
fD, D) f(D,D") fMD+a,D+b)
SOLVED EXAMPLES

Example 6. Find the general solution of the following partial differential

equations:
(@) (D? - 4DD’ + 4D? + D — 2D)) z = e*"
@)yD+D -1 +D -3)(D+D')z=e"sin (2x +y).
Sol. 1) We have (D2—-4DD’+4D2+ D —2D’) z= ™.
D2 —4DD’ + 4D2 + D — 2D’ = (D — 2D’)% + (D — 2D)
= (D —2D)D - 2D’ + 1) = (1.D — 2D’ + 0)(1.D — 2D’ + 1)
CF.=e% ¢ (1ly—(-2x) + et ¢,(Ly — (— 2)u)
=0,y + 2x) + e O, (y + 2x).
1
PL= o moasn’ (2

Here a=1,b=1.
D=1,D=1=D-2D'=1-2(1)=—1#0and D-2D"+1=1-2(1)+1=0

(1)

PI = 1 1 ex+y — 1 1 ex+y
7 D-2D'+1\D-2D’ D-2D"+111-2(1)

— 1 ex+y — x+y 1
T D-2D'+1 -1 ¢ D+D-200+D+1
N—1
_ xHy 1 1= _px+y i 1_2D 1
D-2D D D

—e

D D

x+y.l(1+2D . J.lZ—exﬂ_%(l):_xe“W
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Using G.S. = C.F. + P.1., the general solution of (1) is
z = ¢,(y + 2x) + e™ ¢,(y + 2x) - xe**¥, where ¢,, 9, are arbitrary functions.
@) Wehave D+D" —1)(DO +D" -3)(D + D) z=e*"sin 2x + y). (D)
—  (ID+1D—1D)AD+ 1D =3)(1.D+ LD + 0)z = e**¥ sin (2x + y)
CF.=e D¢ (Qy—1a)+e o, 1 y—1 1) +e "o, (1 y—1-x)
=€ 0,0 D)+ T, )+ 0,0 ).
1

_ ety .
PL=D+D-1DD+D-3D+D)° SnE+)
="ty 1 sin (2x+7y)
D+1+D+1-1)(D+1+D'+1-3)(D+1+ D'+ 1)
x+ 1 :
=e*"Y sin (2x +y)
D+D'+1)D+D'-1D(D+D" +2)
="V 12'(D+D =2 5 sin (2x + )
(D+D)*-1)(D+D")” -4)
R — DrDr-2 sin (2 +y)
D*+D*+2DD"-1)(D* +D’* +2DD’ - 4)
aty D+D' -2
= in (2x +y)
(C4-1+2-1D.2.1-D(4-1+2-D@.D-4 "¢
D+D -2
=e*tY i1—30 sin (2x + y)
:_Kl()e“y (2 cos (2x +y) + cos (2x +y) — 2 sin (2x + y))

1 x+y .
=—— s (2x +vy) — X+ ).
130 e (3 cos 2x+y)—2sin (2x +y))

Using G.S. = C.F. + P.1., the general solution of (1) is
z=e* o;(y - x) + e ¢, (y - x) + ¢,(y - x)

—% e**Y (3 cos 2x +y) -2 sin 2x +y)),

where ¢,, ¢,, ¢, are arbitrary functions.

EXERCISE E

Find the general solution of the following partial differential equations :
D2-DD'+D'-1)z=¢" 2. D2-DD’'+D' —1)z=¢"

D2-D") z=e" 4. D2-D?-3D+3D) z=xy + ¥
D2+DD'+D+D' -1 z=e2 (a2 +y? 6. D(D —2D)(D + D) z= e (a2 + 4y2) .

Non-homogeneous Linear
Partial Differential
Equations with Constant
Coefficients

NOTES

Self-Instructional Material 97



Partial Differential
Equations (PDE)

NOTES

Answers

1
z=e"0,(y) + e Oy(y + x) — xe’ 2. z2=e"0,(y) + e O,(y +x) + Exex
5= zcieaix +a;%y — yettY

i=1

1 1 1 1 2
z= +x) + e —0) - aly—Zaxy——x? - —ad - S —xe™tY
o,y + ) 0y — %) 65V 9%y 13 o7

z= ZCieaix+biy +e7 % (x% + y2 + 6x + 2y + 18), where a?, + a;b. + @, + b, —1=0
i=1

1
2= 0,0) + 0,y + 20 + 0,0y — 1) — a<9x2 +36y% - 18x — 72y + 76) e* 727
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6. PARTIAL DIFFERENTIAL
EQUATIONS REDUCIBLE TO
EQUATIONS WITH CONSTANT
COEFFICIENTS

STRUCTURE

Introduction

Reducible Linear Partial Differential Equations with Variable Coefficients

Solution of Reducible Linear Partial Differential Equations with Variable
Coefficients

INTRODUCTION

Till now we have been discussing the solution of linear partial differential
equations which are with constant coefficients. Now we shall consider the method of
solving a particular type of linear partial differential equations with variable coefficients
that are capable of reducing to a linear partial differential equations with constant
coefficients.

REDUCIBLE LINEAR PARTIAL DIFFERENTIAL EQUA-
TIONS WITH VARIABLE COEFFICIENTS

Let f(xD, yD') = F(x, y) (D)

be a linear partial differential equation with variable coefficients. Here f(xD, yD’) is
some function of xD and yD’ such that (1) may be a linear partial differential equation.
The following are some of the partial differential equations of the form f(xD, yD")

=F(x, y) :
@) x?D? — y2D’2 = 2y
@1) (x*D? — 2xyDD’ + y2D"? —xD + 3yD’) z = 8(y/x)
@it) x%r —y?t + px — qy = log x.
In general, a reducible linear partial differential equation is of the form :

"z ne1 0"z , 0"z
+a.x y a1 +...... +a,y
ox" " "oy oy"

This equation can also be written as

n
agx "

(apx"D" + a;x" 'yD" D + ... +a,y" D" +...... )z=F(x, y).

Partial Differential
Equations Reducible
to Equations with
Constant Coefficients

NOTES
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Partial Differential

Equations (PDE) SOLUTION OF REDUCIBLE LINEAR PARTIAL
DIFFERENTIAL EQUATIONS WITH VARIABLE

NOTES COEFFICIENTS
Let f(xD, yD’) = (apx"D" + a;x™ 'yD" D +...... +a,y" D" +...... )z=F(x,y)
(D)
be a reducible linear partial differential equation with variable coefficients.
Define variables u and v by u=1log x and v=1logy.
x=¢e* and y=e"
Let D, = 9 and D’ = i
ou v
Now x%: %a_u: a_zlzﬁ
ox ou ox ou x Jdu
x%z% or xD=D, ..(2)
s i o G o G v 5]
L Lo
=x +(n-Dx W
n n-1
Do) T
x" 0" =(xi—n + le”_l !
ox" ox ox" 1
or x"D" = (xD —n + 1) x* D!
or "D = (D, —n+ 1) "D, (3
Whenn =2, 3) = «*D?=O,-1)xD=D, - 1D,
D2 =D, (D, - 1)
Whenn=3, 3) = «*D?*=D,-2)x?D*=D,-2)D,[D,-1)
¥*D? =D, (D, — DD, — 2) ete.
Thus, we have xD=D,, x*D?=D,(D, - 1), x*D* =D, (D, - H(D, - 2), ......
Similarly, we have yD’=D /", y*D?=D (D, - 1), y*D?*=D /D, - H(D," - 2) ......
Also, wDD’ =D,D/,
and "y D'D* =D, (D, - 1) ... O, -r+DD,/D," -1 ...... D, —s+1).
Substituting these values, the given equation will be reduced to a linear partial
differential equation with constant coefficients and with independent variables u and v.
This equation is solved by known methods and then the values of u and v are substituted
in terms x and y. This represents the general solution of the given equation.
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SOLVED EXAMPLES

Example 1. Find the general solution of the following partial differential
equations :

) 0%z 0%z 0%z 0z 0z
2 2
—+ 2 +y  —S+tx—+y—-2=0
@) x oz 2w o3y y % Xo oty % z
.. 0’z 0%z 0%z 0z
(ll) .’)C2 ax—2—4xyw+4y2 W+6y$:x3y4
@) x°r —y2t +px —qy =log x
0%z 0%z 0%z 0z 0z
L2 2 _ 2., .2,.3
@v) x ax—2+2xyw+y W+nz-n x£+y$ +x°+yT +x°.
0%z 0%z 0%z 0z 0z
Sol. (i) We h 242 +y S x—+y——-2=0.
ol. @) We have «x 0 Xy oxdy y ay2 x E y dy Z
= @?D? + 2xyDD’ + y2D2 +xD+yD’' = 1) 2=0 (1)
Let u=logx and v=logy.
x=e! and y=e".
Also, xD=D,, yD'=D/, «*D?=D,([D,-1),xyDD’ =D,D,", »*D?=D,'D," - 1),
0 , 0
where D, = o and D," = p

(1) = OO, -1)+2D,D/+D/ D/~ 1)+D, +D/'~1)z=0
(D,2+2D,D,’+ D2~ 1)z2=0
(@, +D)?-1)z=0
D, +D,/ =)D, + D, + 1) 2=0
(1D, + 1.D,/ = D(A.D, + 1D, + 1) 2= 0,
z=e CDul o Lv—1uw+elt¥ o, (lv—1Lu)
=e' 0,(v—u)+e*o,(v—u)

S | N

1
= x¢, (log y — log x) + ™ 0, (log y — log x)

1
= x0, (1og %}%% (log %] = x‘l’l(%)+;\|12 (%) . (say)

. 1 .
The general solution is z = xy (X) +— Yy (X), where y,, y, are arbitrary
x) x x

functions.
.. 9%z 9%z g 022 0z 3 4
(1) We have x2 — —4x +4y° —+6y—=x"y".
ol Y gy T " Yo, T
= (x?D? — 4xyDD’ + 4y2D’2 + 6yD’) z = x°y* (1)
Let u=logx and v=logy.
x=e! and y=e"
Also, xD=D,,yD’=D/,, x?D?*=D,(D, - 1), xyDD’=D,D", *D,*=D,/ (D, - 1),
0 , 0
where D, = % and D" = o

Partial Differential
Equations Reducible
to Equations with
Constant Coefficients

NOTES
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Partial Differential
Equations (PDE)

NOTES

(1) = (D,D,-1)—4D,D/+4D‘(D," — 1) + 6D,) z = et

= (D,2-4D,D,"+4D,? =D, + 2D,") z = 3“1
= (D, -2D,)*— (D, —2D,)) z = uttv
= (D, -2D, YD, -2D," - 1) z= e¥u+lv
(1.D,-2D,/+ 0)(1.D, + (= 2D,/ — 1) z =€+t
C.F.=e% ¢ (1u+ 2u) + et o (1.v + 2u)
=0, Qu+v) + e §,(2u + v) = ¢,(2log x + log y) + x¢,(2 log x + log y)
= ¢, (log a%) + 30, (log x%)
=y, (xy) + xy,(¥%y), say
1 Su+4v
PI = e .2
Here a=3,b=4
D,=3,D,/=4 = D, -2D,/=3-24)=-5%0
and D,-2D/'-1=3-24)-1=-6%0
(2) N PI 1 3u+4v _ 1 3.4

T =516 "0
Using G.S. = C.F. + P.1., the general solution of the given equation is

1 . .
z = y, (x%y) + xy,(x%y) + 30 x%y*, where y,, y, are arbitrary functions.

(111) We have x%r —y%t + px —qy = log x.

= (?D?—9y?D?+xD —yD) z=1log x (1)
Let u=logx and v=Ilogy.
. x=e¢* and y=e¢’
Also, xD=D,,yD'=D/, «’D?=D,(D, - 1), yD?=D/(D,/ -1,
0 0
where D, = u and D" = o

1 = O,D,-1)=D,/M,/ -~ +D,-D)z=u
= D2-D,/HYz=u = O, +D,YD,-D,)z=u
=

(1D, +1.D,/+0)(1.D,;+ - D.D,/+0)z=u
CF.=e%¢ (Qv—1.u+e % ¢,(1v—(-1).u)
=0, —u)+ ¢,V tu)
= ¢, (log y —log x) + ¢,(log y + log x)

=0, (10g %) +¢,(log xy) = vy (%) +y,lxy),  (say.)

’2 -1
PL = L - 12(1—])1 J u

_L 1+£_ u_i(mo)_ﬁ_lao x)3
D12 D12 ...... D12 6 6 g .

Using G.S. = C.F. + P.1., the general solution of the given equation is

Z=\, (%) + Yy (yx) + % (log x)® , where W, Y, are arbitrary functions.
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(iv) We have «x” %+2xy afa? +y° gyii+nz:n(xg—i+yg—;] + 22 + 92 + &0,
=  (x2D?+ 2xyDD’ + y?D? —nxD —nyD’ + n) z=x2 + y% + «° (D
Let u=logx and v=Ilogy.

. x=¢e* and y=e"
Also, ¥D=D,, yD’=D/, «2D2=D,(D, - 1), xyDD’=D,D/,
v T s . , 0
y’D# =D/, - 1), whereDl—g and D, =5
1) = OO, -1)+2D,D,/+D /D, —1)—nD, —nD,"+ n) z=e? + €2 + e3¢
= D2+ 2D,D,/+D,?-D, —=D,"—nD, —nD," + n) z = ™ + % + ¢

(D, +D)2 =+ 1)(D, + D) + n) z= e+ 2 +

D, +D,/ =D, + D,/ —n) z= e + 2 +

(1.D, + 1.D, = D(A.D, + 1.D," — n)z = €2 + €2V + €.
s CF. =elm ¢ (L —Lu) + e o,(1.v— 1w

LI

= et Q)l(p —u) + et ¢2(1> —u) = x0; (log %) + x”(l)z (log %)

=y, (/%) + A"y, (say.)
1

PI = 2y e 4B
= 1 ezu+ 1 ezv
1 3u
+ e
D;+D;-DD;+Dy" —-n)
— 1 eZu+ 1 eZv+ 1 e3u
2+0-1D(2-0-n) 0+2-1DO0+2-n) B+0-1D@B+0-n)
L et y2+ LI
2-n 2-n 283 -n)

Using G.S. = C.F. + P.1., the general solution of the given equation is

2

z:xw1(§)+x“w2(§)+2_ln +y3)+ 3

(x — X
2@3-n)

where y, and y, are arbitrary functions.

WORKING STEPS OF SOLVING f(xD, yD') = F(x, y)

StepI. Putu=Ilogxanduv=Ilogy.

Step II. Change the whole equation in independent variables u and v by using x
=e¢“ and y = ev. We shall get a linear partial differential equation with
constant coefficients.

Step IIL. Find the general solution of the equation obtained in step II.

Step IV. In the general solution, put u =Ilog x and v =logy. This gives the general
solution of the given equation.

Partial Differential
Equations Reducible
to Equations with
Constant Coefficients

NOTES
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Partial Differential

Equations (PDE) EXERCISE
Find the general solution of the following partial differential equations :
2 2 2
NOTES 1. xzﬁ+2xy aZ+ 2a—Z=O
Ao ) &>
2 2 2
5, 1202 3y 02 19202 5% 5,9
ox 0x0y dy 0
2 2
. 202 20z, 0 2o
0x dy ox dy
2 2
2 0°z 2 4
x -yt —==xy
4 axz ayz
2 2
2 0°z 2 0%z )
S
2 2 2
9 0%z 0“z 202 m, n
x*—=+2 +y —5=x
6 2 yaxay y Byz Y m+n=#0,1
x3
7. x*r—3xys+2y%t+px+2qy=x+2y 8. x2r+2xys—xp=y—2
9. yl—q=xy 10. x2r + 2xys + y2 = (x2 + yH)ni2
1
11. «%r —xys —2y%*t + xp — 2yq = log % 3 12. x%r — 4y%t —4yq —z = x%y? log .
Answers
1
1. z= Wl(lJ + xw2(lJ 2. z = %y (k) + = g (x%y)
x x x
3. z= +y| L 4.z= + Yl +ayl
-2E Y ) oy, . -z =y (xy) oy, ) logx
1
5. z=y,(xy)+ x\pz(lJ + = x%y
x 2
m,n
6. z \|f1(xJ W2(xJ m+n)(m+n-1)
7 _ 2 _ o | Y x
. Z_Wl(Xy)+W2(xy)+X+y 8.2—1]!1(}/)"".%‘1]!2 xz _9y_2
2 2\n/2
1 y y), 7 +y%)
1 1
11, z =y, (%) + wo (%J + 3 (log x)2 log y — 1 (log x)?
N b 2,2 (16— 151l0g y) o ap2 _
12. z= Zlcix yi+xty T,Where a?—-4b*—a,—-1=0.
i=
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7. MONGE’S METHODS

STRUCTURE

Introduction

Partial Differential Equation of Second Order

Intermediate Integral

Monge’s Methods

Monge’s Method of solving Rr+ Ss+ Tt =V

Monge’s Method of solving Rr+ Ss + Tt + U(rt —s%) =V

INTRODUCTION

In the last chapter we discussed the methods of solving some special type of
linear partial differential equations with variable coefficients which were capable of
being reduced to linear partial differential equations with constant coefficients by
changing the independent variables. Solving any given partial differential equation
with variable coefficients is not an easy task. We are moving in this direction step by
step.

PARTIAL DIFFERENTIAL EQUATION OF SECOND ORDER

A partial differential equation of the second order is of the form
fx,y,2,p,q, 1, s 1)=0.Itis only in special cases that a partial differential equation of
second order can be solved. Monge’s methods are used to solve some particular types
of equations of second order.

INTERMEDIATE INTEGRAL

Let f,y,2p,q 71 51)=0 (D)

be a partial differential equation of second order. A relation of the form u = ¢(v), where
u, v are functions of x, y, z, p, ¢ and ¢ is an arbitrary function, is called an intermediate
integral of (1) if the given partial differential equation (1) could be derived by
eliminating the arbitrary function o.

1 . . . . .

For example p —— logy =¢(x) is an intermediate integral of the equation xys =1,
X

op 1 1

e ors—i:O or

. .. 1
because differentiating p — — log y = ¢(x) w.r.t. y, we get
X dy x y xy

xys = 1.

Monge's Methods

NOTES
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Partial Differential Remark. Finding of one or more intermediate integrals of a partial differential equa-
Equations (PDE) tion of second order is the first step in the direction of finding the general solution of the given
partial differential equation of second order.

NOTES
MONGE’S METHODS

Let Rr+Ss+Tt+U@t—s)=V (D

be a partial differential equation of second order, where R, S, T, U, V are functions of
X, 5, 2, p, . An equation of the form (1) may or may not admit of a solution. Monge’s
methods are used to solve any solvable equation of the form (1).

In particular if U =0, then (1) reduces to Rr + Ss+ Tt =V. We shall be considering
the cases U =0 and U = 0 separately.

MONGE’S METHOD OF SOLVING Rr +Ss + Tt=V

Let Rr+Ss+Tt=V (D)
be a solvable partial differential equation, where R, S, T, V are functions of x, y, 2, p, q.
Since z is a function of x and y, we have

op op 0%z 0%z
D =—dx+—dy=—4d dy =rd ,
dp EW “ay y 22 x+ayax Y =rdx+sdy
_0q oq 0%z 0%z _
and dq—gdx+$dy=axaydx+ydy—sdx+tdy‘
Solving these equations for r and ¢, we get  r = dp —sdy and ¢= @
x ly
dp - sdy) dq — sdx
- |+Ss+T| —— | =
1) = R( - +s+( & \Y
= s[R(dy)? — S dxdy + T(dx)?] =R dydp + T dxdq — V dxdy (2
The equations : R(dy)? — S dxdy + T(dx)? =0 ..(3)
and R dydp + T dxdq —V dxdy =0 ..(4)
are called Monge’s equations. The equation (3) may have either distinct or same

factors.
Case I. Let  R(dy)? — S dxdy + T(dx)? = (A,dy + B,dx)(A,dy + B,dx) = 0.
In this case we have two distinct systems
A.dy+Bdx = O}

Rdydp + Tdxdq — Vdxdy =0 ..(5)
n Rdydp + Tdxdq — Vdxdy =0 ...(6)

Let system (5) be integrable. Let u=u(x, y, 2z, p, Q) =aand v=uv(x, y,2, p,q) =b
satisfy the system (5).

o u=y() is an intermediate integral of (1), since u = a, v = b satisfy (2) and
hence (1). If system (6) is also integrable, we get another intermediate integral. These
intermediate integrals are solved to find the values of p and ¢ in terms of x and y. The
values of p and ¢ are substituted in dz = p dx + q dy. This is integrated to get the
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general solution of (1). In case we get only one intermediate integral or we want to use Monge's Methods
only one intermediate integral then we express it in the form Pp + Qg =R and use Lagrange’s
method to find the general solution of (1).

Case II. Let R(dy)? — Sdx dy + T(dx)? = (Ady + Bdx)2 =0
Letu=ux,y,z,p,q =a,v=uv(,y,z p, q) = b satisfy the system NOTES
Ady +Bdx =0

Rdydp + Tdxdq — Vdxdy =0

o u=y() is an intermediate integral of (1), since u = a, v = b satisfy (2) and
hence (1). We express it in the form Pp + Qq = R and use Lagrange’s method to find the
general solution of (1).

Type 1. Equations giving two distinct intermediate integrals and both
are used to find the general solution.

WORKING STEPS FOR SOLVING PROBLEMS
Step I.  Write the given equation in the form Rr +Ss + Tt =V,
Step II. Substitute the values of R, S, T, Vin the Monge’s equations :
R(dy)? — Sdxdy + T(dx)? =0 (D
and Rdydp + Tdxdq — Vdxdy =0 .2
Step II1. Factorise (1) into two distinct factors.
Step IV. Find two intermediate integrals. Solve these to find the values of p and q.

Step V. Pulp and q in dz =pdx + qdy and integrate to get the general solution
of the given equation.

SOLVED EXAMPLES

Example 1. Find the general solution of the following partial differential
equations :

@r—tcos®x+ptanx =20 @) xy (r—t) — s(x®> —y%) =qx — py.
Sol. 1) We have r—tcos?x+ p tan x=0.
= r—tcos?x=—ptanx LD
Comparing (1) with Rr + Ss + Tt =V, we get
R=1,S=0,T=-cos?x, V=—p tan x.
The Monge’s equations are :

R(dy)? — Sdxdy + T(dx)> =0 .2

and Rdydp + Tdxdq — Vdxdy =0 ..(3)
2 = (dy)? —cos? a. (dx)* =0
= (dy — cos o dx) (dy + cos oo dx) =0

= dy —cosxdx=0 ..(4)

and dy +cosadx=0 ..(4)
3) = 1l.dydp + (—cos?a) dxdq — (—p tan x) dxdy =0

= dydp —cos? o dxdq + p tan x dx dy =0 ..(D)

We consider the system (4) and (5).

Integrating (4), we get y—sinx=a
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Partial Differential

(49) = dy =cos x dx. Putting this value of dy in (5), we get

Equations (PDE) cos x dxdp — cos? x dxdq + p tan x dx cos x dx =0
= cosxdx (dp—cosxdg+ptanxdx)=0
NOTES = dp—cosxdqg+ptan xdx=0
= (dp +p tan x dx) —cos x dqg =0
= Multiplying by sec x, we get
(secxdpt+tptanxsecxdx)—dg=0
= dp secx)—dq=0
Integrating, we get psecx—q=>
Let b = ¢o(a), ¢ arbitrary.
psecx—q=d(y—sin x) ...(6)
Similarly by solving (4") and (5), we get p sec x +q = y(y + sin x) )
Solving (6) and (7), we get
D= L (0(y —sin x) + y(y + sin x))
2secx
1 : .
and a==5 (0(y — sin x) — y(y + sin x))
Now dz = pdx +qdy.
dz = % (0(y —sin x) + v (y + sin x)dx
—% (0 (y —sin x) — y (y + sin x)) dy
= dz = %q)(y—sinx)(cosxdx—dy) + %\u(y+sinx)(cosxdx+dy)
= dz=— % o0(y —sin x) d(y — sin x) + %\u(y + sin x) d(y + sin x)
Integrating, we get
z= j— %(l)(y—sinx)d(y—sinx) + j %\u(y+sinx)d(y+sinx)
= z = ¢,(y — sin x) + ¢,(y + sin x), (say.)
This is the general solution of the given equation. Here ¢,, ¢, are arbitrary
functions.
(11) We have xy(r —t) — s(x? —y?) = qx — py.
= xyr — (x? —y?) s —xyt = qx — py LD
Comparing (1) with Rr + Ss + Tt =V, we get
R=xy, S=—x2+y2 T=—xy, V=qx —py.
The Monge’s equations are :
R(dy)? — Sdxdy + T(dx)* =0 (2
and Rdydp + Tdxdq — Vdxdy =0 ..(3)
2 = xy(dy)? + (¥% — y%) dxdy — xy(dx)* = 0
= (xdy — ydx)(ydy + xdx) =0
= xdy —ydx =0 (D)
and ydy + xdx =0 ..(4)
3 = xydydp — xy dxdq — (qx — py) dxdy =0 ..(D)
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We consider the system (4) and (5),

dy dx

4 = xdy =ydx = 7:7
Integrating, we get log y =log x + log a
= logZ=loga - Y=q

x x
(B) = ydp.xdy-xdq.ydx—-qdx.xdy+pdy.ydx=0
= ydp —xdq — qdx + pdy =0 [By using (4)]
- (vdp +pdy) — (xdq + qdx) = 0
= dyp —xq9)=0 = yp-xq=0>
Let b=¢(). .. yp—xq=0d(@y/x) ...(6)
Now we consider the system (4") and (5).
4) = dx2+yH=0 = x?+y?=c¢c
B) = xdp.ydy—-ydq.xdx—qdy.xdx+pdx.ydy=0
= xdp +ydq +qdy +pdx =0 [By using (4]
= (xdp + pdx) + (ydq +qdy) =0
= dixp) +d(yq) =0 = d@p+yq)=0 = xp+yq==r.
Let E=wye). . ap+yqg=ykx?+y? (7

We get two intermediate integrals of (1).
Solving (6) and (7) for p and q, we get

Gy )y ) g e ) - w0 ()

x? +y? 2+’
2 2 9 2y
ds = oy (x +§1 )+2y<|> (y/x) di 4 yy(x +§z ) zxq) (y/x) dy.
Xty xC+y
2 2
- de=YE ) v yay)+ 2 (v xdy)
Xty xC+y
2 2
= (> = \lj(xz—-i_yz)d(xZ +y2)_ (I)(y/x) - xdy zydx
2((x" +y7) 1+ (y/x) x
2 2
- do= Y& 1Y) jo2 oy OO L

2(x2 +y?) 1+ (y/x)*
Integrating, we get

w®+y?) o o O (y/x)
_ [ ¥ty )y _ 0 gy
AP (" +y )+.[ 1+ (y/x)? (o/%).
= z = ¢, (x> +y?) + ¢,(y/x), (say).

This is the general solution of the given equation. Here ¢,, ¢, are arbitrary

functions.
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Partial Differential
Equations (PDE)

NOTES

Type II. Equations giving two distinct intermediate integral and only

one is used to find the general solution.

Step I.  Write the given equation in the form Rr +Ss + Tt =V,

R(dy)? — Sdxdy + T(dy)? =0
and Rdydp + Tdxdq — Vdxdy =0
Step II1. Factorize (1) into two distinct factors.

equation.

WORKING STEPS FOR SOLVING PROBLEMS

Step II. Substitute the values of R, S, T, Vin the Monge’s equations :

Step IV. Using any of the factors, find an intermediate integral. Solve this integral
by using Lagrange method to get the general solution of the given

(1)
(2

Example 2. Find the general solution of the following partial differential

equations :

@ (r—sy+(-t)hk+q-p=0 @) (x—y) (xr—xs—ys +yt)=(x +y) (p —q).

Sol. i) Wehave (r—s)y+(@s—-t)x+q-p=0.

= yr+(@x-y)s—xt=p-q (1)
Comparing (1) with Rr + Ss + Tt =V, we get
R=y, S=x-y, T=—x, V=p —q.
The Monge’s equations are :
R(dy)? — Sdxdy + T(dx)?2 =0 (2
and Rdydp + Tdxdq — Vdxdy =0 ..(3)
2 = y(dy)? — (x —y) dxdy — x(dx)? = 0
= (dx + dy)(ydy — xdx) = 0
= dx+dy=0 ...(4) and ydx — xdy =0 ..(4)
B3 = ydydp —xdxdq - @ —q) dxdy =0 ...(D)
We consider the system (4) and (5).
Integrating (4), we get x +y = a.
B = ydydp — xdxdq — pdxdy + qdxdy =0
= ydpdy + xdq (— dx) + pdy (— dx) + qdxdy =0
= ydp +xdq +pdy +qdx =0 (- dy=—dx)
= (vdp + pdy) + (xdq + qdx) = 0
= dpy) +d@x)=0 = py+qx=0>
Let b= wy(a). S pytax=vy(x +y)
This is a Lagrange linear equation.
Auxiliary equations are ﬂ = ﬂ = L ...(6)
y x wlx+y)
6 = @:ﬂ = xdx—-ydy=0 = 1ol(acz—yz):O
y X 2
= x? — y? = k, where k is arbitrary.
dx dz dx

© = &
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o(+dFF)
\/xz—k

= dz =

u=x+,1x2—k = du

:[1+ a ]dx:—zu dx = dx =%
x2 -

dx (7

x2 -k k x2-k U
d
M =  de=vy@). 7” o =YW g,
u
Integrating, we get
u

= z2=0,(u) +b, say
= 2= 0,(x +yx> — k) T 0, (@), say
= Z=¢1(X+Y)+¢2(X2_y2)-

This is the general solution of the given equation. Here ¢,, ¢, are arbitrary

functions.

and

@) Wehave (@x—y) (xr—xs—ys+yh)=(x+y) (p—q).
= @-w)r-@@-y)s+@-y)t=+y) @®-9 (D)
Comparing (1) with Rr + Ss + Tt =V, we get
R=x"-xy, S=-("-y%), T=awy-»" V=@+y @-a.
The Monge’s equations are :

R(dy)? — Sdxdy + T(dx)>= 0 (2
Rdydp + Tdxdq — Vdxdy =0 ..(3)
2 = (% —xy)(dy)? + (&% — y?) dxdy + (xy —y?)(dx)* =0
= x(dy)? + (x +y)dxdy + y(dx)? =0
= (xdy + ydx)(dx +dy) =0

= xdy+ydx=0 .4 and dx+dy=0 ..4&)
B) = (& —wy) dydp + (xy —y*) dxdq — (x + y)(y + p) dxdy =0
We consider the system (4) and (5).

4 = dxy)=0 = axy=a.
B) = @-ydp.xdy+ x—-y)dq.ydx—@p-q)dx.xdy— @ —-q)dy.ydx=0
= (x—y)dp—(x-y)dq—@-qdx+ @ -qdy=0 (+ xdy=-ydx)
= (x-y)(dp—dq) - (p —q)(dx—dy)=0
dp—-dq dx-dy dip-q d(x-y)
- p-q¢ x-y p-q x-y
Integrating, let p—q=blx—y).
Let b=wy(a). - D—q= -y wxy).
This is a Lagrange linear equation.
Auxiliary equations are @ = ﬂ = L ...(6)
1 -1 (x-yylxy
6 = dc=—-dy = x+y=c
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Taking yy(xy), xy(xy), 1 as multipliers, each fraction of (6)
yy(xy) dx + xy(xy) dy +dz  yw(xy) dx + xy(xy) dy + dz

yw(xy) - xwlay) + (x— y) wlxy) 0
. yy(xy) dx + xy(xy) dy +dz =0
= yy)(ydx +xdy) +dz=0 = wy(xy) dxy) +dz=0
Integrating, let  ¢;(xy) +z2=2
Let A= 0,(0). = 0,() +2=0,(x +3)

The general solution of the given equation is
z = ¢,(x +y) - ¢,(xy), where ¢, and ¢, are arbitrary functions.
Type II1. Equations giving two identical intermediate integrals.

Step I.  Write the given equation in the form Rr +Ss + Tt =V,
Step II. Substitute the values of R, S, T, Vin the Monge’s equattons :

Step III. Factorise (1) into two identical factors.
Step IV. Using one factor, find an intermediate integral. Solve this integral by

WORKING STEPS FOR SOLVING PROBLEMS

R(dy)? — Sdxdy + T(dy)? =0 (1)
and Rdydp + Tdxdq — Vdxdy =0 (2

using Lagrange method to get the general solution of the given equation.

and
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Example 3. Find the general solution of the following partial differential

equations :
@) y°r — 2ys +1=p + 6y @) (y - x) (q@°r — 2pqs +p*t) =(p +@)* (p - q).
Sol. 1) We have  y%r—2ys+t=p + 6y. .1

Comparing (1) with Rr + Ss + Tt =V, we get
R=y%2 S=-2y, T=1, V=p+6y.

The Monge’s equations are R(dy)? — Sdxdy + T(dx)? =0 (2
Rdydp + Tdxdq — Vdxdy =0 ..(3)

2 = y*(dy)* + 2y dxdy + (dx)* = 0

= (ydy +dx)2=0 = ydy+dc=0 = dx=—ydy ..(d
Integrating, let x = — % +a = y?+2x=0>b, where b =2a
B = y2dydp + 1.dxdgq — (p + 6y) dxdy =0 ...(B)
= y*dydp — ydydq + y(p + 6y) (dy)* =0
= ydp —dg+ (p+6y) dy =0
= (ydp + pdy) —dq + 6ydy =0
Integrating, py—q+ 3y*=FL.
Let k=wy®). .. py—q+3y>=y(@?+ 2x)

This is a Lagrange linear equation.
The auxiliary equations are
dr_dy__dz

= ..(6
y -1 wy(y? +2x)-3y? ©




and

6 = @:d_yl = ydy+de=0 = y?+2x=c
y -
dz 9
© = —dy=—""% (3y? —w(c)) dy = dz
y(c) -3y
Integrating, let y® —yy(c) =z + d.

Let d=¢,(c)
' y? - yp(y® + 2x) = z + ¢, (y* + 2x).
This is the general solution of (1). Here y, ¢, are arbitrary functions.
(it) We have y—x)@Q%r —2pqs +p2) =@ + @)% (p — Q).
= O —%)qr = 2pq(y —x)s + p*(y — 0t =@ +q)* O — @) (D)
Comparing (1) with Rr + Ss + Tt =V, we get
R=@-%q¢* S=-2pq(y~x), T=p*@-x), V=0+9* @ -q.

The Monge’s equations are R(dy)? — Sdxdy + T(dx)* =0 (2
Rdydp + Tdxdq — Vdxdy =0 ..(3)
2 = v — %) ¢*(dy)* + 2pq(y — ¥)dxdy + p*(y — x)(dx)* = 0
= (y—x)(gdy +pdx)2=0 = pdx+qgdy=0 = dz=0 = z=a.
B = (v — x) ¢*dydp + p*(y —x) dxdq — (p + @)* 0 — q) dxdy =0
= (v - %) [qdp . qdy + pdq . pdx] — (p* — ¢®) [pdx . dy + qdy . dx] =0
= (v - (qdp -~ pdq) — p* —=¢*) (=dy + dx) =0
(v pdx+qdy=0)
dx-y)
= qdp —pdq - @p*-q*) ———=0
y—x
. Jod (£J+(p2_q2)d(x—y):0
q X—y
~ -y, 1 d(gjzo
x-y (plgp"-1 \q
. 1 plg—-1 1
, - =1 =—logb
Integrating, we get log (x —y) + 5 og plg+1 2 0g 0.
pP—q
= X —y)2 =b
(x—y) Ptg
Let b =vy(a). (x —y)? P—q_ y(z)
ptq
= =@ -9-@+vRE=0
= P((x =)= 0(@) —qx—y)*+ w(@) =0 (4
This is a Lagrange linear equation. The auxiliary equations are
dx _ dy :ﬁ
x-97 -0z -(x-y?+y@) O -0
B = dz=0 = z=c.

Each fraction of (5) = dx +dy _ dx — aly2
-2y(@) 20x-y)

dx-y)
(x - y)?

= dx+y)=-y(©)
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Partial Differential

-1
Equations (PDE) Integrating, we get x+y=—y(c). -y 31) +d.

Wy (z)

= x+ty— "L =(d

NOTES A

Let d=9(c).

X+y- M = q)(z) .
-y

This represents the general solution of (1). Here y, ¢ are arbitrary functions.

EXERCISE A

Find the general solution of the following partial differential equations by using
Monge’s method :

1. r=k% .l—rsecty=2qtany

2
3. r—9)x=>0-29)y 4. pt —qs = ¢*
5. ql+qr—-@+q+2pgs+pl+pt=0 6. xy(l — 1)+ (x2—yH(s—2)=py —qx
7. x*r—y%t—2xp+22=0 8. xr—2xs+t+q=0
9. yIr+2xys+x%t+px+qy=0
Answers
L z2=0,00 —kx) + ¢, (v + kx) 2. z=¢,(tan y — x) + ¢, (tan y + x)
3. Xty O, + y) + oy (y/x) 4. y=xz+¢,(2) + ¢,(0)
x=0,(2) + oy(x ty +2) 6. 2 =1xy + 0, (6% + y%) + 0, (x/y)
7. 2y = ()% 0,00 + oy(xy) 8. z=x0,(y + log x) + ¢,(y + log x)

z=y (-2 log (y +x) + ¢ (v2 —x?).
Hint

3. The intermediate integrals are p—q=/f(y/x) and xp+yq—z=glx+y).
Solving for p and q, we get

p= 1 |:z+g(x+y)+yf(lﬂ
x+y x

and q= ! {z+g(x+y)—xf(lﬂ.
x+y x
dz = 1 |:z+g(x+y)+yf(lﬂdx+ 1 {z+g(x+y)—xf(lﬂdy
x+y x x+y x
= x+ydz=zdx+y)+gx+y)dx+y)+f (%J (ydx — xdy)

f(ylx)
LT Ay .
2

(x+y)dz—zd(x+y) _ glx+y) dx+

)+
(x +y)? (x + )2 7
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Monge's Methods

MONGE’S METHOD OF SOLVING
Rr+Ss+Tt+ U(rt-s?)=V

Let Rr+Ss+Tt+ U@t —s%)=V (1) NOTES

be a solvable partial differential equation, where R, S, T, U, V are functions of x, y, z,
D, q.

Since z is a function of x and y, we have

o ap 9%z 9%z

= ——dx+——dy=—dx dy=rd d

dp ox x+ay R +ayax yore
oq dq 9%z 9%z

d dy=—2 dx+>2 dy=sdx + td
and dq O X+ ay axay X+ a 2 Y =sdx +iay.
dp —sd dq - sd.
Solving these equations for r and ¢, we get r = L dxs Y and ¢= qd; =

1 = R(—dp_deJ+Ss+T dg - sdx
dx dy

N U[(dp—sdy) (dg — sdx) _SZJ:V

dxdy
= s[R(dy)? — Sdxdy + T(dx)? + U(dxdp + dydq)]

= Rdydp + Tdxdq + Udpdq — Vdxdy .2
The equations : R(dy)? — Sdxdy + T(dx)? + U(dxdp + dydg) =0 (3
and Rdydp + Tdxdq + Udpdq — Vdxdy =0 ..(4)

are called Monge’s equations. Here, the equation (3) cannot be factored.
Let A=A, y, 2, p, q) be a function such that
A [R(dy)? — Sdxdy + T(dx)? + U(dxdp + dydq)] + Rdydp + Tdxdq
+ Udpdq — Vdxdy
be factorisable.
Let A [R(dy)? — Sdxdy + T(dx)? + U(dxdp + dydq)] + Rdydp + Tdxdq
+ Udpdq — Vdxdy
= (ady + bdx + cdp) (ady + Bdx + ydq)
= ao(dy)? + (aP + bo) dxdy + bB(dx)? + cBdxdp
+ aydydq + codydp + bydxdq + cydpdq =0
Comparing coefficients, we get
ao=AR, af + ba=—-AS -V, bp = AT, ¢f = AU, ay = AU,
co=R,by=T, cy=U.

Let a=Mo=R. .. aoa=AR
Also ay=AU = y=U, ca=R = ¢R=R = c¢=1,
cp=rU = 1.p=AU = =AU, y=T = bU=T = b=T/U.
ap+bo=—AS-V = AAU)+(T/U)R=-AS-V ...(5)

= UA2+SUA+TR+UV=0
Let A, A, be the roots of (5).
We have (ady + bdx + cdp)(ody + Bdx + ydq) =0 ...(6)

Self-Instructional Material 115



Partial Differential ) T
Emations (5D Taking =12, (6) becomes (xldy FSdutl, dp) (Rdy + 2.,Udx + Udg) = 0
= (A, Udy + Tdx + Udp) (Rdy + A,Udx + Udq) =0
(D
NOTES Similarly, taking A = A, we get (A, Udy + Tdx + Udp) (Rdy + A,Udx + Udq) = 0
..(8

Equations (7) and (8) give four systems of equations:

A, Udy + Tdx + Udp = 0] O
AoUdy + Tdx + Udp =0 |
A, Udy + Tdx + Udp = 0] .(10)
Rdy +AyUdx + Udq =0
Ay Udy + Tdx + Udp = 0] LD
Rdy +2,Udx + Udg =0 |
Rdy + A;Udx + Udg =0] (12
Rdy +A3Udx + Udq =0
Subtracting equations of (9), we get (A, —A,) Udy = 0.
If A, #A,, then Udy = 0 identically, which is not true.
System (9) does not give intermediate integral.
Similarly, we reject system (12).
We have only two systems given below:
klUdy+de+Udp=0] .(10)
Rdy + A,Udx + Udg =0
..(11)

AoUdy + Tdx + Udp =0
Rdy + A,Udx + Udg =0

The equation (5) may have either distinct or same roots.

Casel. A, #1,

In this case we have two distinet systems (10) and (11). Let system (10) be
integrable. Let u=u(x, v, z, p, Q) =a, v = v(x, y, z, p, q) = b satisfy the system (10).

u =y(v) is an intermediate integral of (1).

If system (11) is also integrable, we get another intermediate integral. These
intermediate integrals are solved to find the values of p and ¢ in terms of x and y. The
values of p and q are substituted in dz = pdx + qdy. This is integrated to get the
general solution of (1). In case we get only one intermediate integral or we want to use
only one intermediate integral then we express it in the form Pp + Qq = R and use
Lagrange’s method to find the solution of (1).

CaseIl. A, =2,

In this case we have identical systems (10) and (11). Let system (10) be integrable.
Let u=ul,y zp, qQ=a v=v,y,z p, q) = b satisfy the system (10).

u=y(v) is an intermediate integral of (1). We express it in the form Pp + Qq
=R and use Lagrange’s method to find the solution of (1).

Remark. In case the computation of finding general solution of an equation is difficult,
we restrict ourselves to a solution with arbitrary constants.

116  Self-Instructional Material



Monge's Methods

SOLVED EXAMPLES
Example 4. Find the solution of the following partial differential equations :
@Or+4ds+t+rt—s2=2 @) Sr+s+t+rt—s2=-9. NOTES
Sol. (i) We have r+4s+t+rt—s?=2 LD

Comparing (1) with Rr+ Ss+ Tt + U@t —s?) =V, we get
R=1 S=4 T=1, U=1, V=2
A-quadratic equation is U%A2 + SUA + TR + UV = 0.

= M+aAA+(1+2)=0 = A=-1,-3.
Let A =—1,1,=-3.
First system of equations giving intermediate integral is
A Udy + Tdx+ Udp =0 .2
Rdy + A,Udx + Udq =0 ..(3)
2 = —dy+dx+dp=0 ..(4)
3 = dy —3dx+dq=0 ...(5)

Integrating (4) and (5), we get—y+x+p=aandy—3x+ q=>b, where a and b
are arbitrary constants.

Let b=w(a). .. y—3x+q=y(y+x+p)
In particular let Yy+x+p)=a-y+x+p)+p.
y-3x+tqg=ol-y+tx+p)+f
= op—q=—(@+3)hx+(a+1)y—f
This is a Lagrange equation.
. . dx dy dz
The auxiliary equations are — =——= ...(6)
-1 —-(@+3)x+@+Dy-p
6 = ﬂ=—dy=> de+ody=0 = x+aoy=y. (7
o
Equating second and third fractions of (6), we get
dy _ &z |
"1 @+ -a+@+ny-p Using(@)
dz
= dy = —(@® +40+ D) y+oy+3y+P
= (@ + 4o+ 1)y —(ay+ 3y + ) dy +dz=0
2
= (oc2+4oc+l)y?—(ocy+3y+6)y+z=k
2
= @+ do+ ) T —(@+3) @+ o)+ Py+z=o04) [Taking k=)
0(,2 1 )
= ?+(x—§ Yy +@+3)xy+(@+3)Py=2-0(x+ay)
- z:%(oc2+20c—1)y2+(0c+3)xy+(0c+3)By+q)(x+0cy).

This is the general solution of the given equation.
Here o, B are arbitrary constants and ¢ is an arbitrary function.

Remark. For the above equation, y —3x+ g = y(-y + x + p) is an intermediate integral.
Since p appears in the argument of the arbitrary function y, we cannot find the value of p using
this equation and the other intermediate integral of the given equation.
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@) Wehave 3r+s+t+rt—s2=-9. .1
Comparing (1) with Rr + Ss+ Tt + U(rt —s?) =V, we get
R=3, S=1,T=1, U=1, V=-9,
A-quadratic equation is U%A2 + SUA + TR + UV = 0.
= M+r-6=0 = r=2 -3
Let A =2 A =-3.
First system of equations giving intermediate integral is
AUdy + Tdx + Udp =0 (2
Rdy + A,Udx + Udq =0 ..(3)
2 = 2dy+dex+dp=0 = 2y+x+p=a
B = 3dy —3dx+dqg=0 = 3y-3x+q=0>
Let a=wy®). .. 2y+x+p=y@By-3x+q)
In particular, let y(3y — 3x + q) = a3y — 3x + q) + .
: 2y+tx+p=a@By—-3x+q) +f
= p—0q=@Ba—-2)y—-Ba+ DHx+p
This is a Lagrange’s equation. The auxiliary equations are
dx dy dz
T:I:(3a—2)y—(3(x+1)x+ﬁ (D)
@ = dxzﬂ = dytodx=0 = yt+tox=y. ..(®)
4) = dx = dz (Using (5))
Bor—2)(y — o) — B+ Dx +B
= (—@BoZ+a+1)x+ 3oy —2y+B) de =dz
= zz—%(30c2+0c+1)x2+(30cy—2y+6)x+k
= zz—%(30c2+0c+1)x2+(30cy+20c2x—2y—20cx+6)x+¢(y)
[(Putting & = ()]
= z=%(3&2—50c—1)x2+(30c—2)xy+[3x+¢(y+0cx).

This is the general solution of the given equation.

Here o and P are arbitrary constants and ¢ is an arbitrary function.

Example 5. Find the solution of the following partial differential equations:
@) br+6s+3+2rt—-s2)+3=0

@) (q°—1)zr—8pqzs +(p° — 1) 2t + 22(rt —s2) =p? +q* - 1.
Sol. (1) We have

5r+ 6s+ 3t + 2(rt — s?) =— 3. (D)

Comparing (1) with Rr + Ss + Tt + U(rt —s?) =V, we get

R=5, S=6, T=3 U=2, V=-3.

A-quadratic equation is U2A2 + SUAL + TR + UV = 0.

=
Let

HDZ+120+9=0 = A=—13/2,—3/2
A =—32, A, =—3/2

The system of equations giving intermediate integral is

A Udy + Tdx + Udp =0 (2

Rdy + A,Udx + Udq =0

. (3)



2 = —-3dy +3dx+2dp=0 = —-3y+3x+2p=a
3) = bdy —3dx +2dq=0 = bHy—-3x+2q=0>
Let a=wy®). .. —3y+3x+2p=y(By—3x+2q)

In particular, let y(5y — 3x + 2q) = a(by — 3x + 2q) + .

: —3y+3x+2p=abBy—-3x+2q) +p

= 2p — 209 = 3y — 3x + Hoy — 3ok + .
This is a Lagrange’s equation. The auxiliary equations are
dx _dy _ dz
2 20 3y-3x+boy—80x+p (D)
dy
4 = dxz—? = dy+toade=0 = y+ox=y.
...(D)
dx dz
4 == i
@ = 2 G- -s1rmarp SmEO)
= (— (o2 + 60+ 3)x + 3y + Hoy + B) dx = 2dz
1
= —E(50c2+60c+3)x2+(3y+50cy+B)x=22+k
1
= -3 (Bo? + 60+ 3)x2 + ((3 + ba) (v + o) + B) x =2z + ¢(y) [Putting k = 6(y)]

1
= -3 (5o + 60+ 3)x? + (Box? + batx? + 3xy + Haxy + Px) = 2z + d(y + ox)

1
= E(5&2—3)x2+(3+50c)xy+[3x=2z+¢(y+ocx).

This is the general solution of the given equation.
Here o, B are arbitrary constants and ¢ is an arbitrary function.
@1) We have (g% —1) zr —2pqzs + (p? — 1) 2zt + 2°(rt —s?) = p? + % — 1. LD
Comparing (1) with Rr + Ss+ Tt + U(rt —s?) =V, we get
R=@-12zS=-—2pqz, T=@p?-1) 2z U=22 V=p2+qg?—1.
A-quadratic equation is U2A2 + SUA + RT + UV = 0.

= 2N -2+ (@ - DP2 -1 2+2 @ +¢*-1)=0
= 2N —2pqPh + p2?t=0= (zh—pq)?=0= A =pq/z, pqlz.
Let A, =Dpqlz, Ay = Dqlz.
The system of equations giving intermediate integral is
AUdy + Tdx + Udp =0 ..(2)
Rdy + A,Udx + Udq =0 ..(3)
@ = %-szy +@P?-1Dzdc+2%dp=0 .4
B = @—1) zdy+ %.zzdx+zqu=0 (5
4 = pody+ (@*—1)dx+2dp=0= pdy +pdx) —dx+zdp=0
= pdz+zdp—-dx=0 = d@Ep)—-dx=0 = zp-x=a.
b)) = @*—-1) dy+pqdx+2zdg=0= qlqdy + pdx)—dy +zdq=0
= qdz+zdg—dy=0 = diEqg-dy=0 = zq—y=b>.
Let a=wy(b) soozp—x=ylzq —y).

Monge's Methods

NOTES
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4.

In particular, let  w(zq —y) = a(zq —y) + .
zp—x=o(zq-y)+Ph = zp—ozg=x-—oy+p.
This is a Lagrange’s equation. The auxiliary equations are

@: dy _ dz ©)
z -0z x-oy+P
6 = dxz—ﬂ = dy+toadx=0 = y+tox=y )
o
5 @: dz
© = z x-oly—ox)+p
= [(1+ o?)x—oy+p]dx==zdz (Using (7))
2 2
= (1+0c2)%—ocyx+6x:%+k
= (14 0?) % —2x(y + ax) x + 2Bx =22 + 2k
= (1 -0 x? — 20y + 2Bx =22 + ¢(y) [Putting 2k = 0(y)]
= (1 - a?) x2 - 20xy + 2Px = z2 + $(y + ax).

This is the general solution of the given equation.
Here o, B are arbitrary constants and ¢ is an arbitrary function.

EXERCISE B

Find the solution of the following partial differential equations by using Monge’s
method:

1. 3s+(rt—-sH)=2 2.35—2(rt — s%) =2

3. 3r+4s+i+@i—-s3)=1 4. 2r—6s+ 21+ (rt —s2) =4.

Answers
o 9 5 o
1. z= Ey +2xy + By — 0(x + ay) 2. 0z = Ey — 20y — By + oo — 2y)
3. x2+3y*+2z—4xy—2Bx=¢ (v + ax)

z=(@ +a—-1) x>+ Qa—-2)xy + Bx+ oy + ox)
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8. APPLICATIONS OF PARTIAL
DIFFERENTIAL EQUATIONS

STRUCTURE

Introduction

Principle of Superposition
Method of Separation of Variables (or Product Method)
Vibrations of a Stretched String, One Dimensional
Wave Equation 82_y =c? &

ot? x>
Solution of the Wave Equation
Transforming Non-homogeneous BCs to Homogeneous Ones
D’Alembert’s Solution of the Wave Equation
D’Alembert’s Solution Satisfying Initial Conditions

Duhamel’s Principle for One Dimensional Wave Equation

INTRODUCTION

Many physical and engineering problems when formulated in the mathematical
language give rise to partial differential equations. Besides these, partial differential
equations also play an important role in the theory of Elasticity, Hydraulics etc.

Since, the general solution of a partial differential equation in a region R contains
arbitrary constants or arbitrary functions, the unique solution of a partial differential
equation corresponding to a physical problem will satisfy certain other conditions at
the boundary of the region R. These are known as boundary conditions. When these
conditions are specified for the time ( = 0, they are known as initial conditions. A
partial differential equation together with boundary conditions constitutes a boundary
value problem.

In the applications of ordinary linear differential equations, we first find the
general solution and then determine the arbitrary constants from the initial values.
But the same method is not applicable to problems involving partial differential
equations. Most of the boundary value problems involving linear partial differential
equations can be solved by the method of separation of variables. In this method, right
from the beginning, we try to find the particular solutions of the partial differential
equation which satisfy all or some of the boundary conditions and then adjust them
till the remaining conditions are also satisfied. A combination of these particular
solutions gives the solution of the problem.

Fourier series is a powerful aid in determining the arbitrary functions.
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Partial Differential
Equations (PDE)

NOTES

PRINCIPLE OF SUPERPOSITION

fu, u, .. u
then

. ... are solutions of a homogeneous linear PDE in some region R,

n

U=c,u +egy+ - +cu +-= 21 c,u,
n=

is also a solution of that PDE in the region R.

METHOD OF SEPARATION OF VARIABLES
(or PRODUCT METHOD)

In this method, we assume the solution to be the product of two functions, each
of which involves only one of the variables. The following examples explain the method.

SOLVED EXAMPLES

Example 1. Solve by the method of separation of variables: x? E;_u +y? % =
X

Sol. Here u is a function of x and y.

Let u=X() Y(y) ..(1)
where X is a function of x only and Y is a function of y only, be a solution of the given
equation.

ou ou ,
Then —=XY, —=XY

0x ay
Substituting in the given equation, we have

XY+ y2XY' =0

= 22XY = XY’
Separating the variables, we get
xZX/ yZY/
I A (2
X Y

Since x and y are independent variables, as y varies x remains constant, so that
the LHS and hence the RHS is constant. Therefore, equation (2) can hold only when
each side is equal to the same constant, say k.

sz/ _ yzY/ B k
X Y

X’ ’
= = kx? and Y =— ky 2 which are two ODEs.

X Y

-1 -1

Integrating, log X= kxl +logc;andlog Y =- kyl +log ¢,
= log—:—ﬁ and logzzﬁ

Cl X Cz
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k k Applications of Partial

— X = ¢, e * and Y= co e; Differential Equations
Putting these values in (1), we have
11
k[; - ;) NOTES
u = Cl Cz e
=
or u=ce "’ where ¢ = ¢,c,
is the required general solution.
Example 2. Solve the equation 3—u =2 8_1: +u, given that u(x, 0) = 65~
X
Sol. Here u is a function of x and ¢.
Let u = X(x) T() ..(1)

where X is a function of x only and T is a function of ¢ only, be a solution of the given
equation.

Then a—u:X’T, a_u =XT
ox ot

Substituting in the given equation, we have
X'T=2XT"+XT or XT=QQT +T)X
X 2TV+T
= )
X T
Since x and ¢ are independent variables, as t varies x remains constant, so that
the LHS and hence the RHS is constant. Therefore, equation (2) can hold only when
each side is equal to the same constant, say k.

Separating the variables, we get

))(( =k i.e., log X=kx+logc,

X .
or log e kx  or X=ce™ ..(3)

1
and 2T +T=k or 2T+1=k ie., T :l(k—l)
T T T 2
or log T = 1 (k—Dt+logc, or log T _1 (k= Dt
2 cg 2

or T=c,e/?* (D)

From (1), (3) and (4), we have u = u(x, t) = ¢,e"*. c,e/2k -1t

B %(k -1
=ce" -e where ¢ = ¢,c,
Since, u(x, 0) = 6e3*
cekr = e [Given]
= ¢c=6 and k=-3

The unique solution of the given equation is

u=6e3 2 je, u=6e G+20
. 0%z o0z oz ‘
Example 3. Solve the equation S 2 e + > = 0 by the method of separation
x x  dy

of variables.
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Partial Differential
Equations (PDE)

NOTES

Sol. Here z is a function of x and y

Let z=X) Y(y) (1)
where X is a function of X only and Y is a function of y only, be a solution of the given
equation.

) , 2
Then %2 _xy, XY and 2Z-x"Y
ox dy ox?
Substituting in the given equation, we have
X"Y-2X"Y+XY' =0 or X"-2X)Y+XY'=0
X/’ _ 2X/ Y/
e .. (2)
X Y

Since x and y are independent variables, equation (2) can hold only when each

side is equal to the same constant, say k.

X” _ 2X! B

Separating the variables, we get

X k or X"—-2X'—kX=0 ..(3)
Y’ Y’
and ~Y =k or b =—Fk NG

These are ordinary differential equations.
For eqn. (3), the auxiliary equation is m? — 2m — k = 0 whose roots are

m=1+J1+%.

The solution of equation (3) is X = ¢qe
Also, the solution of (4) is Y = ¢ e™™
Substituting these values of X and Y in (1), the general solution of the given
equation 1s

(1+1+k)x 1-y1+k)x
+cye

2= [Cle(1+1 1+k)x + cZe(l—, 1+k)x] . cse—ky

2= [Ae(1+1 1+k)x + Be(l—\ 1+ k)x] e—ky,

or
where A = c¢,c; and B = c,c,.
Example 4. Use the method of separation of vartables to solve the equation

2
8_L2¢ _du + 2u
0x oy
Sol. The given equation is
2
gu_du, gy ()
ox oy
Let u =X Y) (2
where, X is a function of x only and Y is a function of y only, be a solution of (1).
2
Then, o _xy, T _xoy
dy ox

Substituting in (1), we have
XY =XY' +2XY or X'Y=X"+2Y)

or §:§+2:—k2 (say)
” 2
Q) o = X ex—g
dx
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or

v _

ox?

or

AEis
Solution is

m2+hri=0 = m==xkh

X'=¢, cos kx + ¢, sin kx

Y’ _ Y _

i e (k2 + 2
(23] Y k% or (k )
Integrating, logY=—(k*+2)y+logc,
= Y =c, e~ %+ Dy

From (2), the general solution is

. _ (b2
u = (c, cos kx + ¢, sin ky) ¢; e~ * *2¥

. _ 2
u=(Acos kx+ B sin kx) e”* *2¥ where A=c,c,, B=c,c,.
Example 5. Use the method of separation of vartables to solve the equation

9 given that v =0 when t — o« as well asv =0at x =0 and x =1.

0% v

Sol. The given equation is —% = ~— (1
8 a ox? ot M
Let v=X(@) T() (2
where X is a function of x only and T is a function of ¢ only be a solution of (1).
2
Then, 9V X' and L =X
ox ot
Substituting in (1), we have
XT =XT"
))(( = 2‘ =—Fk? (say)
i) ’)(( Sk = X+ =0
AEism?+Ek2=0sothat m==ik

Solution 1s X'=¢, cos kx + ¢, sin kx

.. T
42
(23] T 2
Integrating, log T =— k% + log c,
= T=cye ™
From (2) U= (c; cos kx + ¢, sin kx) . c3 P ..(3)
Now, atx=0,v=0
From (3), 0=c; cq et = ¢,;=0 (- ¢;=0would lead
to trivial solution)
(3) reduces to U=c,sin kx . cg e ¥t NG
Atx=Lv=0
From (4), 0= cyc, sin kle™**

Slnce ¢, # 0 and ¢, = 0 would lead to trivial solution.
smkl=0 = kl=nn

Applications of Partial
Differential Equations

NOTES
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= k= nTn wheren=1, 2, 3, ....
_ n’n? P
From (4), v = (c, €y) Sin % e
_ n’n? p
or v, =b,sin e I wherecyc,=b,
are the only possible solutions of (1) forn=1,2, 3, ...... ,. Hence by superposition principle,
the most general solution is
[n2ﬂ2]
oo T2
v=Y b, e P gin M
n=1
Example 6. Solve by the method of separation of variables:
ou du
4—+—=38u, u=3*-—e* whent=0.
ot ox
Sol. Let u=XT NE))
where X is a function of x only and T is a function of ¢ only.
ou ou
— =XT, — =TX
ot T ox

From the given equation
AXT + TX" = 3XT

4T . X 5
or T tx =
4T X’
or T -3=- < = p? (say) (2
. 4T 3
T 2
d_: 3+_p dt
T 4
Integration yields,
34 p2 [M)t
logTZ( 4th+logc1 = T=ce ¢ ..(3)
(W) X—1)=>X—p=>X—pdx
Integration yields,
log X =—pZ +log c,
X =c, o P (4
From (1), we get
o+ 3+p2)t
u=XT=cpc,e *
—P2x+[3+4p2)t
or u,(x,)=">0,e where c,c,=b,
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Most general solution is

2
2 3+p
- + t

ux, t)= 2 b, e
n=1

- 2
when ¢ =0, ux, 0) = e~ —edr= 2 b,e *
n=1

Comparing, when p?=1,b,=3 and when p?=5b,=-1

Hence, from (5), general solution is

u(x, t) = 3o ¥t _ e—5x+2t

which is the required solution.
Example 7. Solve the following equation by the method of separation of variables

%u »
=elcosx
0x 0t
. ou
given that u = 0 when t =0 and o 0 when x = 0.
Sol. Let u=XT
where X is a function of x only and T is a function of ¢ only.
ou 0 dT
Th —==XT)=X—
e ot ot & dt
Pu _ 9 (xﬂ] _dT dX
oxdt  ox dt ) dt = dx
Substituting (2) in the given equation, we get
aT dX _
dr dp ¢ sy
dT  cosx
el —= =-p?(sa
7t ( X ) p* (say)
dx
dT
N (L 9
ow, ' P
= dT = —p?etdt
Integration yields,
T=pZ2e'+c
Also, ﬁ =— iz cos X
dx p
dX =— iz cos x dx
p
Integration yields,
X=- 1 sin x + ¢,
2
p

Using (4) and (5), we get from (1),

ulx, 1) = XT = (— izsin x+ CZJ (%t +c,)
p

(D)

(2

N G))

(@)

..(®)

..(6)

Applications of Partial
Differential Equations

..(®)

NOTES
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Partial Differential Applying the condition u =0 when ¢ =0 in (6), we get
Equations (PDE)

1 . 5
0: —?Slnx‘f‘CZ (I) +Cl)
NOTES = I)2 + Cl = O = Cl = _p2
From (6) a_u = (— iz sin x + CZ] (_ p2e—t) (7)
' ot D
) .. du )
Applying the condition o =0 when x=01n (7), we get
0=c, (p%?)
= ¢, =0

Substituting the values of ¢, and ¢, in (6), we get

1 .
u(x, t) =— — sin x (1)287': _p2)

=sinx (1 —e¢e7)
Example 8. Solve the P.D.E. by separation of vartables method,

U, =u,+2u, u(,y) =0, 9 w0, y)=1+e%.

ox
Sol. Let u=XY (D)
where X is a function of x only and Y is a function of y only.

a_u:i(xy)zxﬁzxyf
dy oy dy

%u 0% d*X

—=—XY)=Y—=YX"

ox?  ox” x?

From the given equation,
YX” = XY’ + 2XY

X" _Y'+2Y
X Y

= ); =§ + 2 = k(say) ..(2)

. X’I

l =k

@® X
= X"—kX=0
Auxiliary equation is

m?—-k=0

= m::l:\/%

C.F. = CeV™ + Che VF
PI =0

X =C,e* 4 CpeVH* NG
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Yl

. Lo—1

() v 3

= Y,Zk—2
dY

= == =k-2)d
Y (k- 2) dy

Integration yields,

log Y =(k—-2)y+log C,
= Y = Cget—2» ..(D
Hence from (1),

u(x, y) = (C,eV¥ + Cye™ VF%) C otk -2 N6)
Applying the condition u(0, y) = 0 in (5), we get
w0, y)=0=(C, + C,) Czeh =22
= C;+C,=0 = (C,=-C; ..(6)
(" C, =0 leads to trivial solution)

From (5), most general solution is

u(x, y) = £ C,Cy(eVh* — g Vkv) otk =2 (D)

a_u =3 Clcaﬁ(eﬁx +e—\/zx )e(k—Z)y
0x

(au) :1+e—3y =EC1C3@(2)e(k_2)y _ i bn e(k—Z)y
x=0 n=1

ox
Comparing the coefficients, we get
@b, =1, k-2=0
2C,C\VE =1, k=2
1
C,C.,=—F
13 2&
(i) b,=—1, k—2=-3
2C,CVE =1, k=-1
1
)
Hence from (7), the particular solution is

C,Cy=

Vax _ o2ay 4 L (e — iy g

_ 1 4
ll/(x, y) - m (e 92

= ux, y) = % sinh 4/2 x + ¢ sin x.
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Partial Differential

Equations (PDE) EXERCISE A
Solve by the method of separation of variables (1-10):
L322 0)= e 2. 24 %0, 3= 8o
NOTES ° ax ay_ >u(xy )_ e 'ax ayru(:y)_ e
ou Ju . Ju _du . o
4g+g =3u; u(0,y) =4e?Y —e¥ 4. E—a —2u; u(x, 0) = 10e™ — 6e
5, )x —+y— =0 ) v 422220
ox dy Y ox oy
ou ou .. Odu du .
6. () Pl 25 +u; u(x, 0) =6e (1) 48— + ™ =3u given u (0, y) =3e¥ —e™™
X Y
2, 0 L %u u
7. (@) 2x—-3y—=0 ) —5 ~ ==
2
8. (hxl™ voyu=0 (ii) ou_90u Ly, u(x, 0) = 3e5% — Qe
dxay ox dy
2
9. @ 23—u+3%+5u =0; u(,y)=2e ) g—l; = ?TL;; u(x,0)=x>x2+1)
oc 4
2
10. g_z+ a—zz 0; z(x,0)=0, z(x,m) =0, 20, y) =4 sin 3y.
xc
2
11. Solve g—z =2u + du using method of separation of variables subject to the conditions u
xc
=0and g—u = e when x = 0 for all values of y.
X
2
12. Using method of separation of variables, obtain the solution of the equation % =gin x
X
sin y for which gj =—2sin ywhen x=0 and z =0 when y is an odd multiple of T
y 2
Answers
x4y
1. ul y)=4e 2 2. u(x, y) =8e 12 —%
3. ulx,y)=4e* y—e=-% 4. u(x, y) = 10e ~@+30 _ g 2@2x+3)
k pz(y4 ﬁj
5. () u,y) = c(xj @) u@, y)=ce \* 3
y
6. () u(x, t)=6e -3 @) u(x, y) =3e* ¥ — e~ 5y
T () 2(x, y) = cx® y* (i) u(y, y) = g " (Aeospx + Bsin p)
5
8 (ulx,y)=cxke \F @1) u(x, y) = 3e v+ ) _ e~ G +2y)
9. () ux,y)=2e &*+» @) ulx, 1) =x2 (x2+ 1) et
10.  z(x, y) = 4e” sin 3y 11. u(x, y) = e ¥ sin x
12.  z(x,y) =cosy (1 + cos x)
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Applications of Partial

VIBRATIONS OF A STRETCHED STRING, ONE Differential Equations

2 2
DIMENSIONAL WAVE EQUATION 2 -2 9Y
ot OX NOTES

Consider a uniform elastic string  ya
of length [ stretched tightly between
two points O and A and displaced Tz
slightly from its equilibrium position
OA. Taking the end O as the origin, OA Q_—— b
as the x-axis and a perpendicular line
through O as the y-axis, we shall find P
the displacement y as a function of the oy
distance x and the time . T iy

We shall obtain the equation of >
motion for the string under the following g X '
assumptions:

X + 8x A X

(1) The motion takes place entirely in the xy-plane and each particle of the string
moves perpendicular to the equilibrium position OA of the string.

(1) The string is perfectly flexible and does not offer resistance to bending.

(7i1) The tension in the string is so large that the forces due to weight of the
string can be neglected.

. . o —
(tv) The displacement y and the slope % are small, so that their higher powers

can be neglected.

Let m be the mass per unit length of the string. Consider the motion of an
element PQ of length 8s. Since the string does not offer resistance to bending (by
assumption), the tensions T, and T, at P and Q respectively are tangential to the
curve.

Since, there is no motion in the horizontal direction, we have
T, cos ao="T, cos =T (constant) ..(1)
Mass of element PQ is mds. By Newton’s second law of motion, the equation of
motion in the vertical direction is

2

mSS?g} =T, sin B —T, sin o

mds 9%y _Tysinf T;sina

. T 0t2 Tycosp T, cosa [By using (1)]
?y T

. a2 mds (tan  — tan o)

or Py T (2] (2
ot mdr|\ox),,5 \0x),

[Since 8s = dx to a first approximation and tan o and tan B are the slopes of the
curve of the string at x and x + 8x]
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Partial Differential

Equations (PDE) 2 (Q) - (7) T o
or Py Tl o) el |o Ty g
% m o m ox
NOTES 2 2
T
or a_g’ —c? a_g’ where ¢? = —
ot o "

This is the partial differential equation giving the transverse vibrations of the
string. It is also called the one dimensional wave equation.
2 2

The boundary conditions which the equation oy =c? Iy

72 P has to satisfy are :

(7)) y=0whenx=0

(ii) y=0when x = } These should be satisfied for every value of .

If the string is made to vibrate by pulling it into a curve y = f(x) and then
releasing it, the initial conditions are

0
@) y=f(x) whent=0 (1) 8_35) =0 whent=0.

SOLUTION OF THE WAVE EQUATION

The wave equation is

Yy Yy
0y _ 29 (D
ot oxc?
Let y=XT .2
where X is a function of x only and T is a function of ¢ only, be a solution of (1)
2 2
Then, Y X1 and ¥ =xom
ot 0x
Substituting in (1), we have XT” = ¢?X"T
X/l 1 T/l
Separating the variables, we get — =—. ..(3)
X ¢ T

Now the LHS of (3) is a function of x only and the RHS is a function of { only.
Since x and ¢ are independent variables, this equation can hold only when both sides
reduce to a constant, say k. Then equation (3) leads to the ordinary linear differential
equations.

Xh-X=0 and T"—ke®T=0 (1)
Solving equations (4), we get
(@) When k is positive and = p?, say
X =c el + c,e ™, T = ce®! + ¢ e P!
(it) When k is negative and = — p?, say
X =c¢,cos px+c,sinpx, T=c,coscpt+c,sincpt
@ti) When k =0
X=cx+c, T=cyt+c,
Thus the various possible solutions of the wave equation (1) are:

y = (c e’ + c,e ) (ce + c e Ph)
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y = (¢, cos px + ¢, sin px)(c, cos cpt + ¢, sin ¢pt)
y=(cx+cy)eqt + ¢y
Of these three solutions, we have to choose that solution which is consistent
with the physical nature of the problem. Since, we are dealing with a problem on
vibrations, y must be a periodic function of x and ¢. Therefore, the solution must involve
trigonometric terms.

Accordingly  y(x, f) = (¢, cos px + ¢, sin px)(c, cos c¢pt + ¢, sin ¢pt) ...(D)
is the only suitable solution of the wave equation and it corresponds to k = — p2.

Now, we apply the boundary conditions. Since the string is fastened at the ends
x=0and x =1, we have two boundary conditions

y0,H)=0 and y({, ) =0 forallt=0.

Using y=0whenx=0 and y=0whenx=1,
we get 0 = ¢,(c, cos cpt + ¢, sin cpt) ...(6)
and 0 = (¢, cos pl + ¢, sin pl)(c, cos cpt + ¢, sin cpt) )

From (6), we have c¢; = 0 and equation (7) reduces to
¢, sin pl (¢, cos cpt + ¢, sin ¢pt) =0

. nm
which is satisfied when sin pl=0or pl =nmn or p = 7 wheren =1, 2, 3, ......

A solution of the wave equation satisfying the boundary conditions is

nmct . nmct) . nnx
Y =¢C, | Cg COS + ¢4 SIN l S T
nmct . nmct) . nnx
or y,= (an cos = +b, sin T) sin - wheren =1, 2, 3,......

on replacing c,c, by a, and c,c, by b,.
These functions are called the eigen functions or characteristic functions.

nem
The values A, = —; are called the eigen values or characteristic values of the

vibrating string. The set {A,, A,, A,, ...} is called the spectrum.
Adding up the solutions for different values of n, we get

nmet nmet nmx
_ 2: 2 4 b osin =222 | gin =22
y_n=1(an cos 7 ,, Sin 7 Jsm ] ..(8)

which is the general solution.
Now we apply the initial conditions the form of motion of the string depends on

its initial deflection (i.e., y at time £ = 0) and its initial velocity (i.e., % att = 0)‘

Thus we have two initial conditions
y, 0)=f(x) and y, (x, 0)=0, (0<x <)

Using y=f(x) and % =0, when t =0,
- . nmx
we have flx) = 2 ay, SlnnT .9
n=1
o NIC . nmx
and 0= Z Tbn SmT ...(10)
n=1
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Partial Differential Since equation (9) represents half range Fourier sine series for f(x) in the interval
Equations (PDE) (0, ) we have

!
L:%jo @) sin M d e
NOTES From (10), b, = 0, for all n.

a7

nmet . nnx
s e ..(12)

Hence (8) reduces to y = z a, cos
n=1

where a, is given by (11) when f(x) i.e., y (x, 0) is known.

nm
Note: sin pl=0 = pl=nnm = p= — where nis an integer.

l

For negative values of n we obtain the same solutions as for corresponding positive
values of n except for a minus sign, because sin (— o) = —sin o

This is the reason for takingn=1, 2, 3, ... .

TRANSFORMING NON-HOMOGENEOUS BCs TO
HOMOGENEOUS ONES

The method of separation of variable discussed earlier is very powerful but not
applicable to all problems. It is applicable only to problems with zero boundary
conditions (BCs) called homogeneous BCs. Here we shall learn transformation
formulae to convert two different types of non-homogeneous BCs to homogeneous BCs.

I. Dirichlet Boundary Conditions (u prescribed on the boundary curve of
region R)
In this first type of boundary conditions, the displacements u(0, ) = o and u (I,

t )
= B of a vibrating string of length [ are given. Consider the initial boundary value
problem (IBVP):

PDE u,=c*u_, O<x<l, >0
BCs u©, 1) = ull,ty=p, t>0 (Non-homogeneous BCs)
ICs ux, 0) = fw), u,x, 0)=_g)

We cannot solve this problem by the method of separation of variables since the
BCs are non-homogeneous.

To convert the above non-homogeneous BCs to homogeneous BCs, we use the

conversion formula
_ B-a
ulx, t)=|a+ 7 x| tuxt) ..(1)

in the original problem and arrive at a new problem in v (x, t).

Clearly, from (1), we have

u ¢

1 t ’

B-o
u, l + Uy Uy = Upye
— o2 ; y =02
so that u,=c*u, transforms into v, =Cc* U,
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Also, u(0, t) = o = a=a+v0,f) = v0,0H)=0
ull, 1) = B = B=a+(f’;“jl+p(1,t)
= vl,)=0
B-a
And u(x, 0) = f(x) = fx) = [06 +( 7 ) } + v(x, 0)

)
X

X
= o 0) = fx) — [m(‘i“)

u, (x, 0) = g(x) = v, 0) =g
The new PDE with homogeneous BCs is

|

PDE v,=c¢v, ., O0<x<l , t>0
BCs v(0,1) =0 , v, =0, t>0
B-a
1Cs v(x, 0) = flx) — |+ ] X (Homogeneous BCs) v, (x, 0) =

8()

Now using method of separation of variables, v(x, ) can be found out. Subse-
quently, u(x, t) follows from (1).

II. Neumarnn Boundary Conditions (u_prescribed on C)

In this second type of boundary conditions, u_(0, {) = c.and u (I, t) = p are given.
Consider the initial boundary value problem (IBVP):

PDE u,=ctu, O<x<l, >0
BCs u 0,0=a cou = , t>0
ICs u(x, 0) = f(x) cou (v 0) = g()

To convert the above non-homogeneous BCs to homogeneous BCs, we use the
conversion formula

u(x, t) = ox + (Bz—lasz +02(B_7ajt2 + v(x, b) ..(D

in the original problem and arrive at a new problem in v(x, t).

Clearly, from (1), we have

u/x:(x_i_(ﬁgajx_i_lyx, l‘xx:(ﬁg—aj_’_vxx

-
2 — .2 p 2
= cu,=c ( ; J+cvxx

so that

XX

_ 2 . — .2
u,=cu _transforms into U, =C°U,,

Also, u, 0,0=a = a=a+uv, 0,0
= v, (0,)=0
B-a
u (I, =8 = p=o+ 7 l+v (b
= v, =0

Applications of Partial
Differential Equations

NOTES
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2l
= o, 0) = f() — [owc +(B;l°‘)x2}

u, (x, 0) =g = &) =, (v, 0)
The new PDE with homogeneous BCs is

o
X2+ v(x, 0)

And Ww 0= =  [@=oxt (f’

PDE v,=c?v,, 0<x<l, t>0

BCs v (0, =0, v, =0, t>0

ICs v O)—f(x)—[ooc +(B_°‘)x2} v, (x, 0) = 2(x)
x, 0) = £ 5 , ,(x, 0) = g(x

Now using method of separation of variables, v(x, ) can be found out. Subse-
quently, u(x, t) follows from (1).

D’ALEMBERT’S SOLUTION OF THE WAVE EQUATION

The solution of the wave equation

u, =c’u,, (D
can be easily obtained by introducing two new variables
v=x+ct and w=x-ct (2

so that u becomes a function of v and w.

o e
L9t odv ot ow o v ow

u du Jdu 0 0 0
= Z=¢|l—-| = Z==c¢—-—
ot v Jw ot Jv  ow

R AR B R
e ot o w ow )l ow
o *u  u *u  %u
=% — - - +
ov? Odvow Jwdv w2

Now, u

%u 0%u 0%u
= U/“:C2[av—2—2m+au]—2] (3)
ou Jduodv Juow Ju ou
Al o _Ou_Ouodv duodw _Ouqy ou g
50, YT ox " v ox " ow ox ov ow
du Jdu OJu 0 0 0
= — = =t

axE%:ax v oJw

9w d(ow) (9 0 \ou ou
U =—=—\|=|=|=-+=|| =+=
o 9x? Ox | ox dov oJw )\ dv w

%u  d%u 0%u 0%u
= —_— +
v Odvow Jwodv  Juw?>
0%u 0%u 0%u
= = —+2 +— .4
Ui avz Jvow aw2 @
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Using (3) and (4), (1) reduces to

2 2 2 2 2 2
Cza_u_2au+a_u :C2a_L2L+28u+a_L;
ov? ovow  Jw? ov ovow  Jw

0%u 0%u
4 = =
or ovow 0 ow v 0
(),
- owlov)
Integrating w.r.t. w, (v constant)
ou
— :’ )
% (V)

where h(v) is an arbitrary function of v.
Integrating w.r.t. v, (w constant)

u= [ dv +y )

= 0(v) + y(w)
where y(w) is an arbitrary function of w.
or ux, t) =o(x +ct) + y(x —ct)

This is known as D’Alembert’s solution of the wave equation.

D’ALEMBERT’s SOLUTION SATISFYING
INITIAL CONDITIONS

The physical model that controls the wave motion of a very long string is governed
by a PDF and initial conditions only, no BCs in the absence of boundaries. The method
of separation of variables is not applicable in this case.

However, D’Alembert’s solution allows us to solve the initial value problem on
an infinite domain.

Now, we solve the wave equation

u,=c’u,,—<x<o t>0 LD
given that initial deflection u(x, 0) = f(x) and initial velocity u,(x, 0) = g(x).
D’ Alembert’s solution of (1) is

u(x, £) = ¢(x + ct) + y(x —ct) ..(2)

Using the initial condition u(x, 0) = f(x) 1in (2), we get
() = 0(x) + y(x) ..(3)
From (2), u,(x, t) = cd’ (x + ct) —cy’ (x — ct) ..(4)

Using the initial condition u,(x, 0) = g(x) in (4), we get
8() = ¢’ (x) — ey’ (x)

or Lew=0w-vw
c
Integrating both sides w.r.t. x, we get
1 = _
~J;e®@do=00 v )

where a is arbitrary.
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Partial Differential [We have used Fundamental theorem of calculus, viz.

Equations (PDE) d T ex
E[L F(¢) dt = F(x)}
NOTES Solving (3) and (5),
1 1 (=
00 = 2 )+ [ g(®)do ..(6)
1 1
v = o ) - [ @ an (D

Replacing x by x + ¢t in (6) and x — ct in (7), we have

ox + ct) = %f(x +ct) + 2%[: " (0)do ..(8)

1 1 px-—ct
=) = g fe—ch) = o[ g(0)do

1 1 a
=g fe—cn+ o[ 80 do 9
Adding (8) and (9),

O +ct) + ylx—ct) = % [f (x +ct) + flx = cb)]

1 a x +ct
+ %Ut 2(0)do + j g(e)de}

1 1 px+et
= S @ren+fw—col+ o[ 7 g®)do
Using (2), we get
1 1 px+et
u. )= 5 If @t e+ fe—col + o [ g(6)do

which is the required solution satisfying initial conditions.
Particular Case: If the string is initially at rest, u, (x, 0) = 0 so that g(x) =0 and
the solution reduces to

u(x, t) = % [f (x + ct) + fix —cb)].

For example. (1) Let us find D’Alembert’s solution of

PDE: u,=u, , —wo<x<o [>0
IC: ux, 0) =x* | u,(x,0)=sinx
Here =1 = c=1

f(x) =a2 | g(x) =sin x

D’ Alembert’s solution 1s

ute, )= 5 UG+ fie-l+ o [ g0 do

= % [f (x + 02 + flx — 1)?] + %J.:j: sin 0 d0

1
X2+ 12— E[cos (x+ 1) —cos (x—1)]

1 . :
=x2+t2—§(—2s1nxsm 0

or u(x, t) =x? + 2+ sin x sin L.
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(2) Let us find D’ Alembert’s solution of Applications of Partial
Differential Equations

PDE: u,=4c. —o0 < x < oo, t>0
IC: u(x, 0) = a* . u, (x,00=0
Here c2=4 = c=2
’ NOTES
fy=x* | gl) =

D’Alembert’s solution 1s
1
ulx, )= 5 [f (x + ct) + flix — cb)]

1
or ux, t) = 5 [(x+ 20)* + (x — 20)%]

DUHAMEL’S PRINCIPLE FOR ONE DIMENSIONAL
WAVE EQUATION

In D’Alembert’s solution of the wave equation satisfying initial conditions

(1) PDE is homogeneous

(1) at least one of f(x) and g(x) is non-zero.

Duhamel’s principle gives the unique solution of the non-homogeneous wave
equation when both f(x) and g(x) are zero.

Statement. The unique solution of the non-homogeneous wave equation
u,=cu_+h@ ), —e<x<e (>0
with the initial deﬂectlon u(x, 0) = 0 and initial velocity u, (x, 0) = 0 is given by
x +c(t—s)
u(x, t) = —f f Cetes) h(r,s)drds .

For example. Let us find the solution of

PDE: U,=u, +tx—1, —o<x<oo, >0
1C: u(x, 0) =0, u,(x,0)=0
Here 2=1 = c=1 and h(x, t)=x—t

By Duhamel’s principle, the unique solution is

u(x, t) = —J. J.xw(t ¥ h(r,s)drds

c(t-s)

= J.x+(t ) (r —s)drds

x—(t

1 +(t-s)
== [r_ - I ds
2 2 (t—-s)

1 [x+(t—s) —[x = (¢ - 8)?

[\

-slx+(@t-s)—x« +(t—s)])ds

[y

—fo [2x (t —s) - 25 (t — s)|d

=N

—J.; (252 — 2 (¢t + x)s + 2x] ds

\V]
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2 14

3
[S——(t +x)S—+txs}
3 2

0

2 2
= ——-(t+x)— + %«
3 2

2
3 2

= ux, t)=-— 5 + o> is the required unique solution.

/3
= —-—+
6

SOLVED EXAMPLES

Example 9. A string is stretched and fastened to two points l apart. Motion is

started by displacing the string in the form y = A sin T from which it is released at

time t = 0. Show that the displacement of any point at a distance x from one end at time
t is gtven by

y(x, 1) =A sin % cosnTCt.
Sol. The equation of the string is
02 02
9y _.29) (D)

a2 w?
Since, the string is stretched between two fixed points (0, 0) and (I, 0)
hence the displacement of the string at these points will be zero
. v, =0 (2
and vy, H)=0 ..(3)
Since, the string is released from rest hence its initial velocity will be zero

dy
—= =0 at t=0 .4
ot a @
Since, the string is displaced from its initial position at time { = 0 hence the
initial displacement is
X
y(x, 0) = A sin 7 ...(D)

Conditions (2), (3), are the boundary conditions and (4), (5) are initial conditions.

Let us now proceed to solve equation (1),

Let y=XT. ...(6)
where X is a function of x only and T is a function of ¢ only.
¥ _0 oy _x O
ot ot dt

2 2
a_y:i(xd_TJ_X_d T‘
o2 ot dt dt?
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2 2
Similarly, 9%y =T a’X .
0x2 dx?
Substituting the above in equation (1), we get
2 2
x4 ;F e }2( = XT”=c?TX”
dt dx
1 T/l X/l
Casel. T =X =—p? (say)
) 1 T/l 2
0) S =P
d*T
+¢p?T = 0.
dt* P
Auxiliary equation is ~ m? + ¢%p? =0
m2 = ¢2p2i2
m == cpi

C.F. = ¢, cos cpt + ¢, sin cpt

PIL.=0
T=C.F.+P.I =c¢ cos cpt + ¢, sin cpt
g X" 2 ’X
=— = +p“X=0.
() X p 2l P
Auxiliary equation is m?2+p?=0
m==£pi

C.F. = ¢, cos px + ¢, sin px
PI1.=0
X =¢, cos px + ¢, sin px

Hence, y(x, 1) = (¢, cos cpt + ¢, sin ¢pt)(c, cos px + ¢, sin px)
1 T/l X/l
Case II. TTX = p? (say)
1T d>T
. = — 2 22T =0
® 2 P = e op

Auxiliary equation is  m?2—-p2c?=0 = m==pc
C.F.=c,er + ¢ e

PI1=0
T =c, e’ + c e
. X7, a*’xX
= = -pX=0
(if) =P T

Auxiliary equation is
m?—p?’=0 = m==£p
= ePx P
CF.=cel+cge

PI1.=0
X =c,er+cge?”
Hence, y(x, 1) = (c; e + ¢ e P (c, e +cg e)

Applications of Partial
Differential Equations

NOTES

(7

(8
.9

...(10)
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1 T/l X/l
Case III. =T =X =0 (say)
. 1 T 2
) =0 = =0 or LT
¢ T dt?

Auxiliary equation is
m=0 = m=0,0
CF.=cg+cyt
PIL=0
T=cy+cyt

X” d*X

@1) X:O = X"=0 or 5 =0

Auxiliary equation is
m=0 = m=0,0
CF.=c+epx
PL=0
X=cpp+cpx

Hence, (@, 1) = (cg+ ¢y D) (¢ + ¢ 15%)

_.(11)

Out of these three above solutions (9), (10) and (11), we have to choose the

solution which is consistent with the physical nature of the problem. Since, we are
dealing with a problem on vibrations, the solution must contain periodic functions.
Hence the solution which contains trigonometric terms must be the required solution.

Hence solution (9) is the general solution of one dimensional wave equation

given by equation (1).

Now, y(x, t) = (¢, cos cpt + ¢, sin ¢pt) (¢, cos px + ¢, sin px)
Applying the boundary condition,
¥(0, £) = 0= (c, cos cpt + ¢, sin cpt) c,

= ¢y, =0.

From (9), y(x, t) = (¢, cos cpt + ¢, sin ¢pt) ¢, sin px
Again, y(I, t) = 0= (c, cos cpt + ¢, sin ¢pt) ¢, sin pl
= smpl=0=sinnn (el

nm
p=

nmct

. nmnct . nnx
Hence from (12), y(x, 1) = (cl cos + ¢y sin %) ¢y sin nT

dy nmc [ . nmct nnct} . nmX
—=——|—¢;sin + ¢y €OS ¢, Sin ——
ot l l
At =0,
(a_yJ =0= nme [0204 sin _m'[x}
ot J,_o l l
= ¢, =0,
From (13), y(x, t) =c,c, cos net %
y(x, 0) = A sin % =cyc4 Sin %

(12

..(13)

.(14)



= c,e,=An=1 | Comparing

Hence from (14), y(x, t) = A cos nTct sin %
which is the required solution.
2 2
Example 10. Show how the wave equation c? g—g = g_g
x t

can be solved by the method of separation of variables. If the initial displacement and

velocity of a string stretched between x =0 and x =1 are given by y =f(x) and 9 _ g(x),

ot
determine the constants in the series solution.
2 2
Sol. The wave equation is a_g/ =¢? a_;; (D)
ot ox
Let y=XT (2
where X is a function of x only and T is a function of ¢ only.
B _0 py_x 4T
ot ot dt
0’ d’T
Py _xdt
ot dt
. 0%y .. d’X
Similarly, —=T )
Y ox2 dx?
Substituting in (1), we get
2 2
AT _epdX o xr-erxe
dt dx
: i T/l 3 X/l (3)
cz T - X “e
1 T/l X/l
Casel. When ———= =p? (sa
T ox P (say)
) 1 T// 9 d2 9
— — p— T = .
® 2T P = gE e 0
Auxiliary equation is
m2—p2?=0
m ==+ pc
C.F.=c, er + ¢, e
PI.=0
T=CF.+PL=c er"+c,er
. X" d’X
= = -p*X=0.
@) X P 22 P
Auxiliary equation is
m2—p2=0
m=+p
CF.=cyer+c, er”
PI.=0.

X=CF.+PlL=cyer+c, el

Applications of Partial
Differential Equations
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Partial Differential Hence, the solution is
Equati PDE
quations (PDE) y=XT = () €+ ey e 7 (cy € + ¢ ). )
Case II. When

—

” X”
=X =—p*® (say)

NOTES

d>T
=—p? = = +p?T=0.
T dt?

@)

Auxiliary equation is

o
l"’|'_l<-3m|F—‘
e
: 4

m2+p2c?=0 = m==pc
C.F. = (c; cos pct + ¢, sin cpt)

PI.=0.
T=C.F.+ Pl =c; cos cpt + ¢, sin cpt
. X” 2 ’X
=- = +p?X =0.
@) X P dx? P

Auxiliary equation is
m>+p?=0 = m==pi
C.F. = ¢, cos px + ¢g sin px
PL=0
X = ¢, cos px + ¢g sin px.
Hence, the solution is

y = XT = (¢; cos epl + ¢, sin cpl)(c, cos px + ¢g Sin Px)

..(5)
Case IIL When, 2 2" _%"_¢
¢ T X
. 1T d>T
— =0 =0
(L) 02 T = dtz
= T=cy+c ot
X// 2
(i) -0 » 4X_
X dx?
= X=c¢; tex

Hence, the solution is

Y, ) = (cg + c;ot)(c;; + 5% ...(6)

Of the above three solutions given by (4), (5) and (6), we have to choose the
solution which is consistent with the physical nature of the problem. Since, we are
dealing with a problem on vibrations, y must be a periodic function of x and ¢ therefore
the solution must involve trigonometric terms hence solution (5) is the required solution.

Boundary conditions are

y (0,0 =0, yd, 1) =0
Initial conditions are y=f(x)
dy _
and v g(x)
From equation (5), ¥(0, 1) = (¢; cos cpt + ¢, sin cpl) ¢,

0 = (¢; cos ept + ¢, sin ¢pt) ¢,

= c; =0.
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Hence from (5), y(x, {) = (¢ cos cpt + ¢, sin ¢pt) ¢g sin px ..(Ty  Applications of Partial

y(I, t) = 0= (c5 cos cpt + ¢, sin cpt) cg sin pl

. . nm
= smpl=0=sinnnt(nel) = pZT‘
NOTES
nmct . nmct . hmnx
From (7), y(x, 1) = (05 oS ; + cg sin T) cg sin - (8
( nmct . nnct) . nmx
=| a, cos +b, sin —— |sin —
l l l
where c¢.cg=a, andcscg=0b,
The general solution is
y(x, t) = ’;1 (an cos m;d +b, sin nnct) sin % .09
N . nmx
¥, 0) = f(x) = 21, a, sin——
21! . nmx
where a, = —J f(x).sin — dx ...(10)
[ Jo l
From (9), % = % 2 (— n a, sin n7;ct +nb, cos n7;ctj sin %
dy e N . nmx
= - = =— nb, sin —
AtL=0, (atl_o 20 = 7 21',  Sin =
2 ! .
where nTnc b, = 7 Jo g(x).sin % dx
2 ! .
- bnz—j 2(x). sin 7 g | (1)
nme Jo l

Hence, the required solution is

=

nmnct . nmet) . nnx
y(x, 1) = 2 (an cos 7 +b, sin TJ sin wE

n=1

where a,

1
%J‘o f(x).sin% dx

n

2 . nmx
and b :—J g(x) sin —— (.
nme Jo l

Example 11. A tightly stretched string with fixed end points x =0 and x =1 1s

initially in a position given by y =y, sin’ 7 If it 1s released from rest from this

posttion, find the displacement y(x, t).
Sol. The equation of the string is

02 02
e ()
ot ox
The solution of eqn. (1) is
y(x, 1) = (¢, cos cpt + ¢, sin cpt)(c, cos px + ¢, sin px) ..(2)

| Refer Sol. of Ex. 1
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Boundary conditions are
y(0, =0,
yl, =0

Initial conditions are

dy
(wJFO=Q

y(x, 0) =y, sin? %
Applying boundary condition in (2),

¥(0, £) = 0= (c, cos cpt + ¢, sin cpt) ¢,
= c; =0

From (2), y(x, t) = (c; cos cpt + ¢, sin ¢pt) ¢, sin px

Again, y(I, t) = 0= (c, cos cpt + ¢, sin ¢pt) ¢, sin pl
= smpl=0=sinnt (el
_nn
P=T

Hence, from (7),

nmct . nmct . hmx
y(x, t) = | c1 cos + ¢y Sin - ¢y Sin —

dy nmc [ . nmct nnct} . nmx
—=——|—cysin +¢g COS—— | ¢y SIn ——
o 1 l l
At 1=0,
(a_yJ =0= I ey sin T
ot Ji-g ;o l
= ¢, = 0.
From (8),
. nmx nmct . Nnnx nmct
y(, t) =c,c, sin — - cos—— =b, sin o cos—

Most general solution is

- . nmnx nmet
= E b, sin —— cos
y(x> t) ~ n l l

LT O . nmX
y(x, 0) =y, sin® === glbn sin ==

.omx . 3mx
3sin — —sin —— -  9mx . 3
= Yo l 1 l :blsm7+bzsmT+bgsmT+m
Comparing, we get
30 Yo
blzT’b2:O’b3_ 4 ,b4_b5_ =0
Hence, from (9),
3y X et Y 3mx 3mct
x, 1) = —2sin — cos — — =2 sin ——
Y ) = mmsin T cos TS sy !

G
e

..(5)

..(6)

(7

(8

.9



Example 12. A tightly stretched flexible string has its ends fixed at x = 0 and
x=1. Al time t =0, the string is given a shape defined by I'(x) = ux(l — x), Wwis a constant
and then released. Find the displacement y(x, t) of any point x of the string at any time
L>0.

N i 02
Sol. The wave equation is ?g =c? ax_;; (D)

The solution of equation (1) is

y(x, 1) = (¢, cos cpt + ¢, sin ¢pt) (¢, cos px + ¢, sin px) ..(2)
(Refer Sol. of Ex. 1)
Boundary conditions are  y(0, 1) =0 ..(3)
y(, 1) =0 .(4)
Initial conditions are
dy
prl 0 ..(d)
and y(x, 0) = ux(l — x) ...(6)
From (2), ¥(0, £) = 0= (¢, cos cpt + ¢, sin cpl)c,
= ¢y =0.
From (2),  y(x, t) = (¢, cos cpt + ¢, sin ¢pt) ¢, sin px ..(7
y(, t) = 0= (c, cos cpt + ¢, sin cpt) ¢, sin pl
= sin pl=0=sinnn (n € 1)
_nm
D= R
nmnct . nmct . nnx
From (7), y(x, 1) = | ¢q cos + ¢y sin 5 ¢y sin - ..(8)
dy nmc [ . nmct nnct} . nmx
Now from (7) —=—7—|— ¢ 8In + ¢y COS . Cy SIN ——
’ ot l l l
dy nmne . nnx
At t=0, (al_OZOZTCZC‘LSInT
= ¢, = 0.
nnct . nnx
From (8), y(x, f) = ¢,c, cos Tsm 7
= y(, t) =b, cos 7 sin % where c,c, =b,.
The most general solution is
- nnct . nmx
y(x, 1) = 2 bn Ccos T sin T (9)
1

N . nmx
y(x, 0) = u(lx — x?) = 2 b, sin -
1

2 (l .
where b Z—J u(lx—xz)smn—nxdx
nlJo l
COSLTUC l COSL
/S PN Rt B | TP e |
= S =) I La %x) o dx
l o l
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:2—M L (l 2x) cos—dx]
l _nm l
sinﬂ smﬂ
W gigy L j( 29— L dx
nm nn nn
i l 0 l
1
= 2—M2—l sinn—nxdx
nm nm Jo l
cos T l 2 2
_oAw | 4ul 4Ml n
i o :n3n3 (—cosnm+1)= 5.3 5 1-(=D"].
l 0
42 & [1-=D t .
From (9), y(x, ) = MS [1-¢ 3 )] cos T gin M
o0 T n l l
2 > -_— p—
_ 871:2 2 o i = sin 2n ll)nx cos 2n ll)nct‘
1

Example 13. A siring is streiched between two fixed points (0, 0) and (1, 0) and
released at rest from the initial deflection given by

(%)x, 0<x<£
2

and f(x) = (2lk

l
Find the deflection of the string at any time.

)(l x), é<x<l

Sol. The equation for the vibrations of the string is
2 2
Ty _ 29y (D)
ot dx
The solution of eqn. (1) is
y(x, t) = (¢, cos cpt + ¢, sin cpt)(c, cos px + ¢, sin px) ...(2) [Refer Sol. of Ex. 1]
Boundary conditions are, y(0,t) =0, y(l,t)=0
Initial conditions are

dy
ot O
2k x, O<x<—
and y (x, 0) = ! 2
Zk l
—(-x), —<x<l
2
From (2), y(0, t) = (c1 cos ¢pt + ¢, sin cpi) ¢,
0 = (¢, cos ¢pt + ¢, sin cpi) ¢,
= ¢y =0.
From (2),  y(x, t) = (c, cos cpt + ¢, sin ¢pt) ¢, sin px ..(3)
y(, t) = 0= (c, cos cpt + ¢, sin cpt) ¢, sin pl
= simpl=0=sinnm;nel
_nm
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t .
+Cg SIN —— N G)) Differential Equations

nme nmet . nmx Applications of Partial
From (3),  y(x, ) =| ¢y cos 4 SIn ——

dy nme . nmnct nmct . nnx
——=——"|—-¢;sin +CZCOST c4s1nT

. o 1 NOTES
Y nmne . nnx
AttZO, (&Jt_o :0:T|:CZC4 SIHT}
= cy =
From (4), y(x, t)=cc, cos nmct sin %
=b, cos nmct sin % (where c;c,=b,) ..(5)
The most general solution is
N nct . nmx
yx, ) = z b, cos% sin nT ...(6)
n=1
¥, 0)= Y, bysin [From (6)]
1

l
where b, = EJ y(x,0) sin AL
lJo l

A

1/2 l
J' 2—kxsinﬂdmj 2k 1 - sin T dx
o [ [ 72 1 [

4k | (2 | nmx l . nmx
_l_z_jo xs1anx+J;/2(l—x)s1anx}
i 12
4k _COST /2 COST
l_2 ¥ nn _.[0 nn dx
i l 0 l
1
— COS —— 7 —COoS ——
-0 —— L —j D — |ax
nn 1/2 nn
l 1/2 l
i n /2 7
_ﬁ _L L M_{_L Sin l L L M_L SlnT
] nn 2 2 nm nn nmn 2 nm nn
L l 0 l U2 |
—4—k_isinn—n—i(sinnn—sinn—nJ
L _nzn2 2  n?n? 2
:ik_ﬁsinn_n _isinn_n
12 | n%n? 2 | n2n?

nrw nnet . nnx
0 n
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Example 14. A tightly stretched violin string of length | and fixed at both ends

1s plucked at x = 3 and assumes initially the shape of a triangle of height a. Find the
displacement y at any distance x and any time t after the string is released from rest.
Sol. One Dimensional wave equation is
Py _ 2 9%
at_2 = ax_2 ..(1)

The solution of eqn. (1) is
y (x, 1) = (¢, cos cpt + ¢, sin cpt)(c, cos px + ¢, sin px) ...(2) (Refer Sol. of Ex. 1)

Egn. of ine OCi1s y—-0= (lz—O (x—0)
—=0
3
..(3)

Bqn. of line CA i —O_a(xl)
qn. of line CAis  y—a=7_72 3

—a( l) 3a( l)
a= —|x——|=—-Z|x-=
3 21 3

B
3 Ya
y_aq=_%.@ C (U3, a)
2l 2
e Sy )
2 2 2 ( l @ .
Hence the boundary conditions are
y0.0=0 () 0 B A X
y(l, 1) =0 L© xEe x=d o x5
Initial conditions are
% =0, (7
&ﬂ, O0<x<lIf3
and y(x, 0) = 34 ( x) /
—|1-= —=<x<l
2 l 3
..(8
From (2), ¥(0, ) =0 = (¢, cos cpt + ¢, sin cpt) ¢,
= ¢, =0.
From (2),  y(x, t) = (c, cos cpt + ¢, sin ¢pt) ¢, sin px
.9
y(, t) = 0= (c, cos cpt + ¢, sin cpt) ¢, sin pl
= sin pl =0 = sin nn(n € I).
_nn
= p="7
B ( ct . nnct) . nmx
y(x, t) =| €y COS +c¢y s1n Cy SIN —— “,(10)
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Applications of Partial

dy nme . nmct nmct . nmx
o, T 5| TSI ——+Cy COS —— | €y SIN ——. Differential Equations
ot l l l
At t=0,
dy nmne nmnx NOTES
3], o
= =0.
nmncet . nmx nmnct . nmx
y(x, t) = ¢;c, cos ] smT:bn cos ] smT‘
The most general solution is
y(x, t) = ; b, cos m;Ct sin% (1D
From (11), y(x, 0) = 2 b, sin ﬂ, where
1
1
- %[0 y(x, 0) sinnTnxdx
1/3 1
sz &ﬂ i —dx+ 3a(1——) n—nmdx
13 2 l [
1
%Taj‘ xsm—d 32a l/3(1—§)sin$dx}
13
—cos "™ s —cos ™
N M Y o
3 0 3
l 0 l
1
—cos . —cos T
L 3a (1_3) — L ] (_1) N Y
l l nn s\ 1 nn
l 3 l
3
_6a|_ 1 L onm L|P g
12| nn’'3 3 nam| nm
L Jo
. n
Sa| L 2 nn 170
Il |nn’ 3 3 nm nmn
l U3
_6a| I* n 12 nm| 3a| 2 nm_ 1 (0_ n_nJ—
—l—{—%cos 3 T2 s1n?] I |3 3 P S |
6 [—1 1 nn} 6a[ nn} 3a . nm
= —|—cos—+—sin — [+ — + sin —
nn| 3 3 nn 3] nnl3 3] n?n? 3
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F 11 { —aiism— § MCL in T
rom (11), y(%)—z1 5 7 i

Example 15. The points of trisection of a string are pulled astde through the
same distance on opposite sides of the position of equilibrium and the string is released
from rest. Derive an expression for the displacement of the string al subsequent time
and show that the mid-point of the string always remains at rest.

Sol. The equation for the vibration of the string is

2 2
Ty _p2 2y (D)
ot ox
The solution of eqn. (1) is
y(x, 1) = (¢, cos cpt + ¢, sin ¢pt)(c, cos px + ¢, sin px) ..(2)
Let I be the length of string (Refer Sol. of Ex. 1)
Eqn. of OB is,
Ya
-0
y=0=7 (x-0) B (éh>
20
3 <2_1, 0>
3h h 8
= y=—x 3) = A b
l o) D N (1,0) X
Eqn. of BC is 0.0) <é 0)
—h-h( 1 o
yhEa T\t o (51
3 3
_ —2’1( _LJ _ @(x_LJ
B (l) 3) 1
3
y—h= G]le 2h
2
y=3h_ 6hx_3h(1——x) (4
l l
. O+h( 21\ 8h( 20\ Shx
Eqn. of CA is, y+h:l_—21(x_§J:7(x_EJ:T_2h
3
y_¥—3h 3h(7—1) G)

Hence Boundary conditions are
yO. =0, yl,)=0
Initial conditions are
dy
=0,
ot
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?’l_h x, 0<x<l/3 Differential Equations
3h l 2l
and y(x, 0) = 7(1—236), ngSE
35 9] NOTES
—(x-1), —<x<I
l 3
From (2), ¥(0, £) = 0= (c, cos cpt + ¢, sin cpt) c,
= c,=0.
From (2),
y (x, ) = (¢, cos ¢pt + ¢, sin ¢pl) ¢, sin px ...(6)
y(l, t) = 0= (c, cos cpt + ¢, sin cpt) ¢, sin pl
= smpl=0=sinnn (el
_nn
nmnct . nmnct . nnx
From (6), y(x, t) = (cl cos ; + ¢4 Sin T) Cy s1nT (D
dy nmc ( . nmct nnct) . nmx
—=——|—-¢;sin + ¢y COS—— [y SIn ——
ot l l l
dy nmne . nnx
At t= 0, (at Jt 0 O l 0204 sin T
= =0
t .
From (7),  y(x, t) =c,c, cos nmct sin % =b, cos m;C sin %
The most general solution is
- nmct nmx
x. 1) = b, cos ——sin —
v 0= T sin— ®

y(x} O)ZanSinm,where
1
=%'[ ¥, 0)sin "7 d
l/3
:%[ _hxsian j —(l 2x)s1anx+jl/
1/3 21/3
_2 %I csin 7 gy + 2 30 (1 - 2x) sin % g
I 1 Jo l 11 l

2 3h
+=.—
I 1

2l/3

%(x—l)sinﬂdx}
3 [ l

(x

—l)sin$dx
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nmx
@ _COST _J‘l/sl _COST "
I nn 0 nn
l 0 l
21/3 T
—cos ™ 2l/3 —cos ™
Sl -om)| — L —j -2)| ——L |dx
l nn 13 nn
! 13 ! |
, i
cos —— . - cos ——
nmn 21/3 nn
l 21/3 ! |
13
6h| =L L onm 1|
12 |nn’3 3 nm| nm
Lo
21/37]
6h|-1 1 nn\l 1 21|
+ 5|5 -—|-cos——|+|cos —|.———
[“| 3 nmn 3)3 nn nmn nmn
l 13

2nat+ L (sin nmnx/l !

12| 3 nn 3 nm nm/l 91/3
- 2h nm 6h . nm 2h 2nm
= COS — + —5—5 Sin — + — oS ——
nm 3 n°n 3 nm 3
2h nt  12h ( . 2nm nn) 2h anm 6h anm
+—CoS— - ——5|sin———sin— |- 5|0 —
nn 3 n°m nmn n°n 3
_ 18h sin VT _ 18h sin 2nm _ 18~ . N 18Ah sin (nn—n—n)
n?n? 3  n2n? 3 n2n2 3 n?n?
= —18h si nn 187 sinn—n cos N’
n2n2 el
36k . nm .
_ J—5 5 sin—, whenniseven
n°n 3
0, when n is odd
36h nmct nmx
From (8), y(x,t)=—7" —s1n T cos sin ——
5 n l l
. 9h i i T os 2mmet sin 2mmx 9
y, ) =—5 . = ? 7 7 .9

(where n = 2m)
in eqn. (6), we get

l 9% ~— . (2mm) 1
y(E’t):?ZSln( 3 ).?.cos

m=1

[
Putting x = —
utting v = o

2mmet . _
.sin mm = 0.

Hence, midpoint of the string is always at rest.



Example 16. If a string of length L is initially at rest in equilibrium position and  Applications of Partial
Differential Equations

each of its points is given the velocity (—yJ =bsin® R find the displacement y (x, t).
t=0

ot
Sol. The equation for the vibrations of the string is NOTES
2 2
1%2&3%. (1)
ot ox

The solution of equation (1) is

y(x, t) = (¢, cos cpt + ¢, sin cpt)(c, cos px + ¢, sin px) ...(2) [Refer Sol. of Ex. 1]

Boundary conditions are, y(0,1) =0 ..(3)
y(, )=0 .4
Initial conditions, are y(x, 0)=0 ...(5)
and (ﬂ)zbsinSE att=0 ...(6)
ot l
From eqn. (2), (0, #) = 0= (c, cos cpt + ¢, sin ¢pt) c,
= ¢y, =0.
From (2), y(x, t) = (¢, cos ¢pl + ¢, sin ¢pt) ¢, sin px ..(7
y(I, t) = 0= (c, cos cpt + ¢, sin ¢pt) ¢, sin pl
= smpl=0=sinnn (el
_nn
nmnct . nmct . nnx
From (7), y(x, t) = (cl cos + ¢y sin T) ¢4 SIn - (8
y(x, 0) =0=c,c, sin %
= ¢, =0.
. nmct . nnx
From (8), y(x, £) = c,c, SIn 5 sin -
t .
=b, sin m;C sin % where c,c, = b,
The general solution is
v =Y b, sin 2% sin )
n l

a_y 2 b, nme nmet sin nmx

cos
l l l

At t=0, (a_yj =an.n—rwsinm
1

%[3sin%—sin3Tm}:b1£sinE+ 2b,me sinz—m+3b3 Esing—mc+...
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nc _ 3b 3bl
"I T e

=
_ 3bgmc b bl
by =0 and ==y = b o
Also, b,=0=b, = .. etc.
H fi 9 )= 300 sin met sin = - bl sin Smet sin Smx
ence from (9), @, 1) = ~sin =7 I 12nc l l
[ . mx . met . 3mx . 3nct}
= 9 sin — sin — —sin — sin
12mc l l l l

Example 17. A tightly stretched string with fixed end points x =0 and x =1 1s
nitially at rest in its equilibrium position. If it s set vibrating by giving to each of ils
points an initial velocity Ax(l—x), find the displacement of the string at any distance

x from one end at any time t.
Sol. Here the boundary conditions are y(0, ) =y(, t) =0

ncet . nmet) . nnx
+b, —Jsm (D)

oo

y(x, t) = 2 (an CcoSs

n=1

l

| Refer Sol. of Ex. 2

Since the string was at rest initially, y(x, 0) =0

N . nmx
From (1), 0= 2 a, sin -7 = q,= 0
n=1
N . nmet . nmx
y(x, 1) = 2 b, sin — sin—— (2
n=1
dy ~ nme nmet . nmx  mC N nnet . nox
== ——b, cos sin — =— in ——
and o ’;1 7 On ] ) nb, cos ; si 7

0
But 8_3/‘1 =Ax(-x) whent=0

2l —x) = % ’;1 nb, sin _mltx
TiC 2 ! . nmnx
nb, =—J Ax(l — x) sin —— dx
lJo l

= T
22, l nmx I . nmx I’ nmx
= T |:x(l - .’X,‘) (— E COoSs T) - (l - 2.’X,') (— W Sin TJ + (— 2) (W CoSs T]}O

2

412
=—F—= (I —cosnmn)=—%— [1-(CD"
5.3 ( ) B [1-ED7
0, when n is even 9
2 . 8\l )
=< 8M\ . te, ———  takingn=2m -1
3 3> Wwhennisodd 3 (2m - 1)>3
n°mn

o o 8
" oent@m -1t

From (2), the required solution is
- 1 . 2m-Dmnct . Cm-Dmnx
sin )

YA
= sin
Y b ent 2 2m-1* ! l l

m=1
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solve

and

Example 18. Solve:

PDE U,—u, =x—1t —o<x<oo, >0

ICs u(x, 0) =x*, u,(x, 0) =sinx.

Sol. Here we split the given problem into two problems with u, (x, t) and u, (x, {) and

W), = (W),
(u,) (x, 0) =, (u,), (x, 0) =sin x
(uy),, = W), +x—1
(uy) (x, 0) =0, (uy), (x,0)=0
The solution of the given problem is then
ux, ) = u (x, t) + uy(x, )
By D’ Alembert’s formula [c = 1, f(x) = x* , g(x) = sin x]

1 4 4 1 x+t
@, )= 5 [+ 1) +(x_t)]+§jx_t sin 0 dO

1 1
= 5[(x+t)4+(x—t)4]— E[COS (x+t) —cos (x —1)]

=xt+06x22+t* +sinxsin £

By Duhamel’s principle [hx, ) =x — 1]
1 ot t—-5) 1 o 9 x +(t—s)
x +(t-s r
uy(x, 1) = EIO Ix_(t_s) (r—s)drds = EJ.O [?—srl_(t_s)ds
¢
1 3 2
= —J.t [2s% — 2t + x)s + 2x]ds = [S——(t+x)s—+txs}
270 3 2 0
t° t* £
=—-(t+x)— +2x=— —+—
3 ( )2 t’x P
£t
Hence (u, t) = x* + 6x%(? + {* + sin x sin ¢ — R

EXERCISE B

Find the deflection y(x, t) of the vibrating string of length © and ends fixed, correspond-
ing to zero initial velocity and initial deflection f (x) = k (sin x — sin 2x) given ¢ =1.

Solve:y,, =4y, . ;y0, )=0=y(5, 1), yx, 0)=0 (%)t—o = f(x)

if (1) f(x) =5 sin mx (11) f(x) = 3 sin 2mx — 2 sin 5.
Find the deflection of the vibrating string which is fixed at the ends x =0 and x =2 and

the motion is started by displacing the string into the form sin?® (E) and releasing it
2

with zero initial velocity at t = 0.
Find the solution of the equation of a vibrating string of length [ satisfying the initial

conditions:
y=F(x) when t =0
and % = o) when t =0

It is assumed that the equation of a vibrating string is y,, = a?y_.

Self-Instructional Material

Applications of Partial
Differential Equations

157



Partial Differential 5.

Equations (PDE)

NOTES

158  Self-Instructional Material

10.

11.

12.

13.

14.

The vibrations of an elastic string are governed by the partial differential equation

a? o
The length of the string is m and ends are fixed. The initial velocity is zero and the initial
deflection is u(x, 0) = 2(sin x + sin 3x). Find the deflection u(x, t) of the vibrating string at
any time t.
Using D’ Alembert’s method, find the deflection of a vibrating string of unit length having
fixed ends, with initial velocity zero and initial deflection f(x) = a(x — x?).
The ends of a tightly stretched string of length [ are fixed at x =0 and x=1. The string
is at rest with the point x = b drawn aside through a small distance d and released at
time ¢ = 0. Show that

2d1? i 1 nnb nmnx nmct

vy, ) = — — sin sin cos
n’b(l-b) < n® ! ! !
Find the deflection of the vibrating string of unit length whose end points are fixed if the
1, 0<x< l
initial velocity is zero and the initial deflection is given by u(x, 0) = 2
—]., E <x<1

Find the deflection u(x, t) of a tightly stretched vibrating string of unit length that is
initially at rest and whose initial position is given by

1
sin 7x + gsin 3mx + % sin by, 0<x<1

A string is stretched and fastened to two points distance I apart. Find the displacement
y(x, t) at any point at a distance x from one end at time ¢ given that:

yx, 0) = A sin(2;rxj

Solve the following initial-boundary value problem (IBVP):

0%u 9%

—5 = T3 O<x<l1, t>0
ot ox
u0, 1) =2, ul,)=3, t=20

u(x, 0) =2 + x + sin nx

du
a ), =

Solve the following initial-boundary value problem (IBVP):

%u %
5 = T3 O<x<l1, t>0
ot ox
u 0, =1, ul,)=3 120
u(x, 0) = x + x2, u,(x, 0) = mcos mx.
Use D’Alembert’s formula to solve the IVP:
u,=4u,,, —<x<o, (>0

u(x, 0) =sinx, u,(x, 0)=4.
If u(x, t) = sin x cos | + 2xt is a solution of the initial value problem

u —co<x<oo, (>0

tt uxx’

ux, 0) = f®), u,(x, 0)=2x
Use D’Alembert’s formula to find f(x).



15. What is the solution to the initial-value problem: Applications of Partial
() PDE u,=u_, —co<x <o, 1>0 Differential Equations

ICs ux, 0)=e™ , ux 0)=0
@) PDE u,=u,, —co<x <o, >0 NOTES
ICs u(x, 0)=0, u,x, 0)= xe™
@it) PDE u,=u, +2, —co<x <o, (>0
ICs u, 0)=0, ulx,0)=0
(v) PDE u,,=4u +xsinl, —eo<x <o, 1>0
ICs u(x,0)=0, u,x 0)=0.

Answers

1. y(x, t) = k(cos t sin x — cos 2t sin 2x)

5 3 1
2. @)y, t)= on sin Tx sin 27t @) y(x, t) = i sin 27x sin 4mt — B sin 57 sin 107t
3 t —isinﬂcosﬂ_lsinﬂcosw
LY =Sy 2 4 2 2

=

. N nnal . nnat
4. yx, 0)= 2 sin == (an cos —— + b, sin T)

n=1

2 (! 2
where a, = —j F(x) sin " gx  and b,=—— ¢(x)sin T gx
[ Jo nam Jo
5. y(x, 1) = 2[cos t sin x + cos 31 sin 3x] 6. y(x, 1) = ax(1 — x% — 3¢21?)
2 1 nm) .
8 vy )= ~— 2 —|1+ cosnm —2cos — |sin nmx cos nnct
T n 2
n=1
‘ 1 1
9. u(x, ) = sin mx cos mcl + 3 sin 3mx cos 3mct + 5 sin Hmx cos Hmct
_ . 2mx 2mct _ .
10. y(x, 1) = Asin ; CoS - 11. u(x, 1) = 2 + x + sin mx cos 1t
12. u(x, t)=x+x>+ 1>+ cosmxsin i 18. u(x, t) = sin x cos 21 + 41
14. f(x) =sin x
1, _ - .. 1, o _
15. () utx, )= le (07 4 ==t (i) ux, 1) = le (=t _ g+t

@) u(x, t) =12 @) ulx, 1) = x(l — sin 1)

VIBRATING MEMBRANE—TWO-DIMENSIONAL
WAVE EQUATION

We shall now obtain the equation for the vibrations of a tightly stretched
membrane (such as the membrane of a drum). We shall assume that the membrane is
uniform and the tension in it per unit length is the same at every point in all directions.
Let T be the tension per unit length and m be the mass of the membrane per unit area.
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Consider the forces on an element 5x8y of the membrane. Due to its displacement
u, perpendicular to the xy-plane, the forces T8y (tangential to the membrane) on its
opposite edges of length 8y act at angles o and B to the horizontal. So their vertical

component
= (Tdy) sin B — (Tdy) sin oo = Tdy(tan P — tan o) approximately, since oo and  are small

], )] el )

0x ox Sxc

2
= T3xdy a_LQL upto a first order of approximation.

0x

y + Oy

A

Yh-ooomomeooee- | 1
,'l ,: X + OX R
0 X X
Similarly, the forces Tdx acting on the edges of length dx have the vertical
2
component Tdxdy 8_1;
dy
Hence the equation of motion of the element is
o%u %u  0%u
mdxdy) — =T | —5+—5| dxd
(moxdy) =2 (ax2 PN Rt
%u o [0%u % T
or at_zzc (E)ac_z+ay_2 Wherec2=;‘

This is the wave equation in two dimensions.

SOLUTION OF TWO-DIMENSIONAL WAVE EQUATION

Two-dimensional wave equation is

0%u z(aQu aqu

FYCRRR (PRI ()
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Let u=XYT ..(2)
where X is a function of x only, Y is a function of y only and T is a function of ¢ only, be
a solution of (1).

2 2 92

Then a_g =XYT”, ou X"YT and —L; =XY"T

ot 0x? dy

Substituting in (1), we have - XYT” = XYT + XY"T
C

Dividing by XYT, we have = + ..(3)

cc T X 'Y

This will be true only when each member is a constant. Choosing the constants
suitably, we have

1 T/l B X// Y'//
_2 —_

2 d%Y 2
X EX=0,"5 +Y=0 and L
dx dy dt

The solutions of these equations are respectively
X' =¢, cos kx + ¢, sin kx

+kR2+ 1% c*T=0

Y=c,cosly+c,sinly

and T =c, cos (k% +12) ct + cg sin (k2 + 1) ct

Hence from (2), a solution of (1) is
u(x, y, t) = (¢, cos kx + ¢, sin kx)(c, cos ly + ¢, sin ly)

[ cos (B +12) ct + cg sin (k2 +12) cl]
..(4)
Now let us suppose that the membrane is rectangular and is stretched between
the lines

YA
x=0,x=a,y=0,y=0>.
C y=b B
Then the boundary conditions are:
@) u=0,whenx=0 o
@) u=0,whenx=a . I
@) u=0, wheny=0
@v) u=0, when y =b for all ¢. >
. L. . (0] y=0 A X
Applying the condition (i), we have
0=¢,(c, cos ly + ¢, sin ly)[c, cos NEE 1) et + g sin VB2 +12)ct]
r.e., ¢, =0
Putting ¢, = 0 in (3) and applying the condition (1), we have sin ka = 0

mn ) .
or k = ——, where m is an integer.
a

Similarly, applying the conditions (i17) and (iv), we get

nn . .
c;=0 or [=——, wherenisan integer.

b
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Partial Differential Therefore, the solution (3) becomes

Equations (PDE) - ‘ ™ . nmy ‘
u(x, y, t) = ¢y, SIn sin > (¢; cos pt + ¢, sin pi)
m? n?
NOTES where p =nc ,|—-+ W
a
Replacing the arbitrary constants suitably, we can write the general solution as
O O . MNX . nm
u(x, y, ) = 2 2 sin . sin Ty (A, cos pt+ B sin pt) ..(d)
m=1n=1

Now suppose the membrane starts from rest from the initial position
u =[x,y e, uk,y, 0) = fx, ).

0
Then applying the condition: a—I: =0whent=0,wegetB =0.
Also using the condition: u = f(x,y) when t = 0, we get
- . mmx . nmy
= A sin sin ——
ftx, ) 2 2 mn . b ..(6)

m=1n=1

This is a double Fourier series. Multiplying both sides by sin M sin nTny and

integrating from x =0 tox =a and y = 0 toy = b, every term on the right except one
becomes zero. Thus, we get

a b
J J f(x, y) sin 2% gin 2. gy dx=2 A
a b
A= [ [ o sin ™ sin My d ™
ab Jo Jo b a

Hence, from (5), the required solution is

o . mmx . Am
uy,y, ) = 2 2 A, sin . SmTy cos pl

m=1n=1

2 2
where A is given by (7) and p = nc 1,m_2 + Z—2
a

SOLVED EXAMPLES

Example 19. Find the deflection u(x, vy, t) of the square membrane with a =b =
¢ = 1, if the initial velocity is zero and the initial deflection f(x, y) = A sin nx sin 2my.

Sol. The vibrations of the square membrane are governed by two dimensional
wave equation

%u o [0%u %
= (1)

PR PR
Here the boundary conditions are,
u@0,y,)=0,u(l,y, ) =0, u(x 0,0)=0,ulx 1,1)=0
and  the initial conditions are

ou
u(x, y, 0) =f(x,y) = A sin mx sin 2my and ( j

o =0

t=0
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To solve eqn. (1), let w=XYT ..(2)
where X is function of x only, Y is a function of y only, and T is a function of ¢ only.

%u 02 d>T
T =% XYT) = XY
ot ot? &YD dt?
%u 9% d*X
—=—— XYD)=YT ——
oxZ  ox? ( ) dx?
2 2 2
a_;‘:a_z(XYT)=XTd_§,
dy” 9y dy
From (1), XYT” = (YTX” + XTY”)¢2

D S £

= 5 +
cc'T X Y

This will be true only when each member is a constant. Choosing the constant
suitably, we have

2 d%Y 2
X L kX=0, %5 +EY=0 and &
dx? dy

The solutions of these equations are respectively,

T
+ R2+12)c?T=0.
dt?

X =c¢, cos kx + ¢, sin kx

Y=c,ycosly+c,sinly

and T =c, cos k> +1% ct +cg sin\k* + 1% ct.

u(x, y, t) = (¢, cos kx + ¢, sin kx)(c, cos ly + ¢, sin y)

[c, cos k2 +1% ct+cgsin k2 +1% ct]  ..(3)

From (3), u(0, y, t) =0=c,(c, cos ly + ¢, sin ly)(c, cos VEZ +12 ct + Ccg Sin \/m ct)
= ¢, =0.
From (3),
u(x, y, t) = ¢, sin kx(c, cos ly + ¢, sin ly)

(c; cos k% +12 ct +cg sin k% +1% cl) ..(4)

u(l, y, t) =0=c, sin k(c, cos ly + ¢, sin ly)(c, cos VEZ +12 ct + g Sin JEZ+12 ct)
= sink=0=sin mn (m e I)
k=mm.

From (4), u(x,y,t) = c, sin mnx(c, cos ly + ¢, sin ly)
(cycos VE2 +12 ct+cgsinyk2+12 ¢ty ..(5)
u(x, 0, 1) =0 =rc, sin mmx . c,(c; cos VE2 + 1% ct + cg sin k% + 1% cf]

= ¢y, =0.
From (5),

u(x, y, t) = c,c, sin mmx sin ly (c; cos \/kz +1% ct + cg Sin JEZ+1% ct) ..(6)
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Partial Differential
Equations (PDE) u(x, 1, 1) = 0 = cyc, sin max sin [ (¢, cos k% + 1% ct + cg sin /k* + 12 cl)

= sinl=0=sinnt (el
NOTES = l=nm
From (6),
u(x, y, ) = c,c, SIn mmx sin nmy (¢ cos NEZH 12 et + g SIn \le +1%ct)
u(x, y, t) = sin mnx sin nmy (A, cos pt + B, sin pt) .(7)
where p=mc ,Im +n?.
The most general solution is
u(x, y, t) = 2 2 sin mmx sin nmy (A, cos pt+ B, sin pt)
m=1n=1
..(8
Applying the condition,
ou
— O [, =
% att=20
we get B,,=0 ..(9
Also, using the condition u = f(x, ¥) = A sin mx sin 2my
when £ =0, we get
A sin mx sin 2my = Z Z A, sin mmx sin nmy
m=1n=1
This is a double Fourier Series.
A= % 2 j j A sin mx sin 2wy sin mmx sin nmy dx dy
Obviously, A=A =A = =0
But, A, =4A J J sin mx sin mnx sin? 2my dx dy
0 Jo
3 1 1 . .
=2A Jo Jo sin mx sin mmx (1 - cos 4my) dx dy
1. . sin 4my !
=2A J smnxsmmnx(y——j dx
0 ),
1
=2A jo sin mx sin mmx dx
Again, obviously,
A=A, =A,=..=0
But, A, =2A J sin? mxdx = A J (1-cos 2mx) dx
sin 2mx
zA(x— j =A ...(10)
2n ),
From (8), (9) and (10), we get
u(x, y, t) = A sin mx sin 2my cos pl ..(11)
where p=mcm?+n? =n(l) J1+4 =n.5.
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From (11), u(x, y, t) = A cos m./5 ¢ sin mx sin 2my.

Example 20. Find the deflection u(x, y, t) of a rectangular membrane
(0 < x<a, 0<y<b)whose boundary is fixed ; given thatl it starts from rest and
u(x, y, 0) =xy(a — x) (b —y). Show that the deflection u is given by

ux, y, t) = 2 2 A,,, cosckt sin ma smnTny

m=1n=1

where A= %(1 —cos mm)(1 —cosnn) and kZ=mn? (m—2+z—2 .
i a
Sol. Proceeding as in Art. 2.11, we have
ulx, y, t)= 2 2 A sin mcsm Zy cos pt
m=1n=1
2 2
where p=mnc |[T (D)
a® b
From (1), u(x, y, 0) = 2 2 A sin ms nz:y
m=1n=1
xy (@a—x)(b—y) = 2 2 A, sin ms nz:y
m=1n=1
where Amn—— —J J xy (@ —x) (b - y) sin nxsdeydx
=4 " x(a-2)sin dx.J y(b - y)sin 22 gy
ab Jo 0 b
— cos —sin cos
_ 4 _ a |, _ a _ a
= x(a—x) o (a - 2x) 3z +(-2) 5.3
a aZ a3 0
b
—cosnbﬂ —sinnbﬂ cosnTny
Xlyb-y)|————|-b-2y)| —5——|+(-2)
Y Y nn Y n?n? n3n3
b b? AN
ab | m®n?® m3n3_ n’nd n®nd
4 24d° 2b°
= g - C )= D7)
_ 16a%b* n m
Amn 336 [1_( 1)][1 (_1) ]

Hence from (1),

16a b2

u(x, y, t) =

Z 2 1-CD" ]3[13 D" sin mix sin ny cos pt
— m°n a b

Applications of Partial
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Partial Differential 2 2
Equations (PDE) where p=mc m_2 + n_2 ..(2)
a b
Expression (2) may also be put in as,
NOTES

mmnx . nmy
sin —=

u(x, y, t) = 2 2 A, cos ckt sin

m=1n=1 a

_ 16a%b*

mn
77’1,371567’1,3

2 2
where A (1 —cos mm)(1 —cos nm) and k% =n? (m_z + n_]
a

b2
Example 21. A tightly stretched unit square membrane starts vibrating from

rest and its mitial displacement is k sin 2nx sin my. Show that the deflection at any
mstant is

k sin 2nx sin my cos ({5 T ct).

.9 %u  9*
Sol. Here we have to solve the equation ?;L =c? (_u + 24

ox?  oy?
with boundary conditions u@O,y, )=ul,y, )=ulx, 0, ) =ulx, 1,1) =0
and the initial conditions u(x, y, 0) = f(x, y) = k sin 2mx sin my
0
& 0 whent=0
ot

Proceeding as in Ex. 1, we have

ulx, y, t) = Z 2 A, sin mmx sin nmy cos pt ..(D

m=1n=1

Since, a=b=1, wherep=nc+m?+n?

1,1
and A = 4 j j k sin 27mx sin my sin m7x sin ny dydx
mr1x1JdoJdo

1
0
=0 form#2 or n%l

A, =4kE)E) =k and p=mnc 2?2+ (D2 =5mc

Hence solution (1) reduces to u(x, y, £) = k sin 2nx sin my cos (J/5 mct).

1
=4k J sin mmx sin 2mx dx J sin nmy sin my dy
0

EXERCISE C

1. Find the deflecting u(x, y, ) of a rectangular membrane (0 < x <1, 0 <y < 2) whose
boundary is fixed, given that it starts from rest and u(x, y, 0) = xy(1 — x)(2 —y).

2. Find the deflection u(x, y, t) of a rectangular membrane (0 < x < a, 0 <y < b) whose
boundary is fixed, given that it starts from rest and u(x, y, 0) = xy(a® — x%) (b? — y?).

3. Find the deflection u(x, y, ) of the tightly stretched rectangular membrane with sides a

and b having wave velocity ¢ = 1 if the initial velocity is zero and the initial deflection is

. 2mx . 3my

f(X', y) = s T sm ——.

b
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Answers

O % 256
. . iy
1. ulx, y t)= 2 2 A, sin mmux sin I cos pt, where A~ = —3 3§, both
melncol 2 m°n°n
n2
m, n oddand p=mnc ;2 + 2
4
SEAN _ mmx . nm 1444%3
2. ux, y t)= 2 2 A, sin ma sin nby cos pt, where A = % and p = mc
m=1n=1 mnm
m?  n
a® b®
onx . 3my 4 9

3. u(x,y, 1) = sin = sin —= cos pt where p= T |— +—5 .
a b a® b

ou 2 o%u
ONE-DIMENSIONAL HEAT FLOW 3t =C 6—2
X

Consider the flow of heat by conducting in a uniform bar. It is assumed that the
sides of the bar are insulated and the loss of heat from the sides by conduction or
radiation is negligible. Take one end of the bar as origin and the direction of flow as
the positive x-axis. The temperature u at any point of the bar depends on the distance
x of the point from one end and the time ¢. Also, the temperature of all points of any
cross-section is the same.

_________________________

XV

(0] X X + dx 1

The amount of heat crossing any section of the bar per second depends on the
area A of the cross-section, the conductivity K of the material of the bar and the

. ou . .
temperature gradient FLCE rate of change of temperature w.r.t. distance normal to

the area.
Q,, the quantity of heat flowing into the section at a distance x

ou

=—KA( ) per sec.
ox /),

(the negative sign on the right is attached because as x increases, u decreases).
Q,, the quantity of heat flowing out of the section at a distance x + dx

-k (2]
=— o) .o per sec.
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Partial Differential
Equations (PDE)

NOTES

Hence the amount of heat retained by the slab with thickness 8x is

0 0
Q,-Q,=KA |:(£Jx+5x - (%)x:( per sec. (D

But the rate of increase of heat in the slab = SpA dx ?)—I: .. (2)

where S is the specific heat and p, the density of the material.

0
From (1) and (2), SpA 8x kA (a_u) _ (a_u)
at ax x+0x ax x

SR
or Spg =K Qox ), s \0x),

dx

Taking the limit as x — 0, we have

2 2
Sp a_u:Ka_L; or a_u:£a_u
o ox ot Sp ox?

2
or %_u =c2 g_;‘ , where ¢2= SE is known as diffusivity of the material of the bar.
t x Y

SOLUTION OF THE HEAT EQUATION

0
Ox 2

The heat equation is T =c (D)
Let u=XT ..(2)
where X is a function of x only and T is a function of ¢ only, be a solution of (1).
a 2
Then % X1 and 2 =xor
ot 0x
Substituting in (1), we have XT = ¢2X"T
X/l 1 T/
Separating the variables, we get =— ..(3)
X ¢ T

Now the LHS of (3) is a function of x only and the R.H.S. is a function of ¢ only.
Since x and ¢ are independent variables, this equation can hold only when both sides
reduce to a constant, say k. The equation (3) leads to the ordinary differential equations.

d?*X dT
— kX = — —kc?T = .4
72 b 0 and 7 ke 0 @

Solving equations (4), we get

(1) When k is positive and = p?, say

2 2
= x —PX = c'pt
X=ce+ce? T=c,e
(it) When k is negative and = — p?, say

X = + ey sin py, T=c, e 7"
=c¢,cospx+c,sinpx, T=c e
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@ti) When k =0
X=cx+ce, T=c,.

Thus the various possible solutions of the heat equation (1) are:

u=(c,e” +c e . c, et ..(5)
. 2 2

u = (¢, cos px + ¢, sin px) . c,e” ©P'* ...(6)

u=(cx+c,)c, ..(T)

Of these three solutions, we have to choose that solution which is consistent
with the physical nature of the problem. Since u decreases as time ¢ increases, the only
suitable solution of the heat equation is

. _ 2.2
u=(c, cos px + ¢, sin px) c; e L.
Solution (5) is rejected since u — o as t — .

Also, solution (7) is rejected as it gives a non-zero temperature at all times.

INHOMOGENEOUS BOUNDARY CONDITION

Now consider the case where the ends of a rod are kept at constant temperatures
different from zero.

Consider the IBVP, u,=u_,0<x<L,t>0
uO, H)=o,u,)=p;t>0
u(x, 0) = f(x)

To convert the inhomogeneous boundary conditions to homogeneous boundary
conditions, we use the following transformation formula:

u(x, t) = [0&+(B£aJx} +uvxt)

We can easily show that now v (x, £) will be governed by the IBVP:
U, = U, O0<x<l, t>0
v, H=0=v L, 0, t>0

v, 0) = flx) — [a+(6£a}c}

v(x, t) can now easily be found using method of separation of variables.
Consequently u(x, t) can readily be obtained as a final result.

SOLVED EXAMPLES

Example 1. A rod of length | with insulated sides is initially at a uniform
temperature u,. Its ends are suddenly cooled to 0°C and are kept at that temperature.
Find the temperature function u(x, t).

Sol. The temperature function u(x, t) satisfies the differential equation

0

ot o2
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Partial Differential As proved in Art. 2.13, we have

Equations (PDE) . CICH
u(x, t) = (¢, cos px + ¢, sin px) c,e” ° ? (D
Since the ends x = 0 and x = [ are cooled to 0°C and kept at that temperature
NOTES throughout, the boundary conditions are u(0, t) = u(l, t) = 0 for all ¢

Also u(x, 0) = u, is the initial condition.
Since u(0, t) = 0, we have from (1),

- czpzt

0=cicqe = ¢ =0
From (1), ul(x, t) = c,c, sin px. e <*p't .. (2)
Since u(l, {) =0, we have from (2),
0=cyc,sinpl. e <*p’t
= smpl=0 = pl=nn
nm . .
p=".n being an integer
" —c2nPn’t
2
Solution (2) reduces to u(x, t) = b, sin W e ! on replacing c,c, by b, .
The most general solution is obtained by adding all such solutions for
n=1,23,...
I —c2n’n?t
. nmx
u(w, =Y, b, sin == ¢ r .3
n=1

‘ - . nmx
Since u(x, 0) = u,, we have u,= Z b, sin -
n=1

which is half-range sine series for u,,.

0 , whenniseven

2 (! nmx
= — 1 — = 4
b, 1 .[0 to St 1 dx =1 2o , when nis odd

nm
Hence the temperature function
o 2n’n’t
4u, 1 . nmx ~—p
u(x, t) = — 2 — sin e e
n=135..."
I 2 @2n-1%n%
4u, 1 . @n-Dmx ——=
=0 2 sin ( ) e *
i 2n-1 l
n=1

Example 23. Find the temperature in a bar of length 2 whose ends are kept at

zero and lateral surface insulated if the initial temperature is sin o> +3 sin —.

2
Sol. Let u(x, t) be the temperature in the bar. The boundary conditions are
u(0, t) = 0=u(2, i) for any ¢. NE))
The initial condition is
144 5mx
u(x, 0) = sin o + 3 sin Y ..(2)
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One-dimensional heat flow equation is

2
du_ 20

i (3
Its solution is
u(x, ) = (¢, cos px + ¢, sin px) ¢, =Pt .4
u0, 1) =0= clcSe‘czpzt | Using (1)
= ¢, =0
From (4),
u(x, t) = cyc, Sin px P ...()
u, t) =0=c,c, sin o2p ocpt | Using (1)
= sin 2p =0 =sin nn

nmn
p=—,nel

2
Hence from (5),
2,2 2
) nmx _n'mct
u(x,t)=>b, sin 5 4 | =0,
The most general solution is
b 2,2 2
) nmx _n'mct
u(x, t) = 2 b, sin e 4 ...(6)
n=1

X 5mx - . nnx
u(x, 0) = sin (?) + 3 sin (T) = 2 b, SmT
n=1

o (m [ 2mx [ 5mx
=bysin | 57| +bysin [ 5| +..tbysin | 5|+
Comparing, we get

b,=1landb =3
Hence from (6),

i . Brx _95m2e2t/4
u(x, t) = sin (E o T4 + 3 sin : o2
2

Example 24. An insulated rod of length | has its ends A and B maintained at
0°C and 100°C respectively until steady state conditions prevail. If Bis suddenly reduced
to 0°C and maintained at 0°C, find the temperature at a distance x from A at time L.

Find also the temperature if the change consists of raising the temperature of A
to 20°C and reducing that of B to 80°C.

Sol. Initial temperature distribution in the rod is
( 100 - 0) 100
u; =0+ x= x
l
Final temperature distribution (i.e., in steady state) is

u2=0+(0_0)x=0
l
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Partial Differential

To get u in the intermediate period,

Equati PDE
qua lOnS( ) u= u/2(x) 4 u/l(x) t)
where u,(x) is the steady state temperature distribution in the rod. u,(x, t) is the
NOTES transient temperature distribution which tends to zero as ¢ increases.
u, (x, t) satisfies one dimensional heat flow equation
u(x, t) = 2 (a, cos px + b, sin px)e” <*p’t NE))
n=1
In steady state, w0, t)=0=u(,t) .2
From (1), u,f)=0= Z ane_czpzt = a,=0 ..(3)
> . _ 2.2
Also, u(ll, ty=0= 2 b, sin ple 7" | using (3)
n=1
= simpl=0=sinnm,nel
or = n7n ..(4)
- nmx ‘(ﬂ)zczt
From (1), (3) and (4), u(x, t) = 2 b, sinTe ! ..(d)
n=1
Using initial condition,
u(x, 0) = Z sin 7%
100
which is half-range sine series for -5
21
b, =—J ﬂxs n 2 gy
LJo 1 l
1
200 — cos . cos — —
= —|9x ! - J 1 dx
! nn 0 nn
l 0 l
200 | - 12 sin==
= — —lcosnn+L = -
l nm nm nn nm
Lo
Hence the temperature function
2,2 2
o t
200 &2 (1" . nm g
ux, ) = — sin e !
n§=:1 n l
In the second part, the initial condition remains the same as in first part i.e.,
100
u(x, 0) = N X,
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Boundary conditions are u(0, ) = 20 and u(l, t) = 80 for all values of ¢ then, final

temperature distribution is

x=20+7x

- 60
uy =20+ (80 20)

Then, u = uy(x) + u,(x, 0
60

u=20+7x+ 2 (a, cos px +b, sin px) e “ 7"

n=1

w@©,0)=20=20+ Y a,e "

n=1

From (6), u=20+ @x + 2 b, sin px e~ - pt

ud, t) = 80 = 20+—l+2b sin ple™©

= 0= Z b, sin ple P

simpl=0=sinnm,nel

From (7) and (8), 11_20+—x+ 2 b, s1n—e (T)t

Using initial condition,

u(x, 0) = #x 20 + —x+26 sm—
= 4—lox—20=zlbnsin$
where b, j(—x 20jsinmdx
l l
l
—cos "™ . — cos
_2 (ﬂx—zo) 1 _J 0
l l nn o 1 nn
l 0 l
i l
. nmx
2| - 201 200 40 | 5™
== COS N — —— + —
l| nn nn nam| NN
L Lo

-4
= —0(1+cosnn)=

-80
nm -

nmn

, when n is even

{ 0, when n is odd

| From (6)

| From (7)

..(6)

(7

(8

.9

Applications of Partial
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Partial Differential
Equations (PDE)

NOTES

Hence equation (9) becomes,

= (e
u/(x,t)=20+$x_& z lsin$e(l)t

n n=2,4,.. n
(n is even)
o 4c’m’n’t
:20—"_@36‘_@2 isinzmme 2 ‘(takjngn=2m)
l n e~ m l

Example 25. The ends A and B of a rod of length 20 cm are at temperatures
30°C and 80°C until steady state prevails. Then the temperature of the rod ends are
changed to 40°C and 60°C respectively. Find the temperature distribution function
u(x, t). The specific heat, density and the thermal conductivity of the material of the rod

...k
are such that the combination p_cs =c?=]
Sol. Initial temperature distribution in the rod is

u/1=30+(¥)x=30+2x

Final temperature distribution (i.e., in steady state) is
60— 40

u/2=40+( )x=40+x

To get u in the intermediate period,
u=u,x, ) + uy(x)

where u,(x) is the steady state temperature distribution in the rod u; (x, #) is the transient
temperature distribution which tends to zero as ¢ increases.

u, (v, t) satisfies one dimensional heat flow equation.

u=40+ x + z (a, cos px +b, sin px)e_pzt LD
n=1
In steady state,
u(0, t) =40 ..(2)
u(20, t) = 60 ..(3)
From (1), and (2), u(0, t) =40 =40 + 2 a, e P | From (2)
1
— _ 2
0= @ e’ = a =0 (4
1
From (1),
u=40+x+ 2 b, sin px e P
n=1
Again, u(20, t) =60 =60 + 2 b, sin20pe ¥
n=1
= 0= 2 b, sin 20 p e Pt
1

sin20p=0=smnn,nel
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nm
- P~ %0
w (2]
u=40+x+ Y b, Sm%e 20 .(5)
n=1

Using initial condition,

u(x, 0) =30 + gx in eqn. (D), we get

= 30+gx:40+x+glbnsin%
3 - . nnx
S x—-10= b —_—
= 2x 10 ’;1 , Sin 20
20
where _2 (Ex - 10) sin 7% gy = — 20 [2(= D"+ 1]
"20Jo \ 2 20 nn
2
20 & [20-1"+1) . nmx (5] ¢
From (5), u(x, t)=40+x——2 sin e N0/
T = n 20

Example 26. The temperature distribution in a bar of length 7w which is perfectly
mnsulated at ends x = 0 and x =71 is governed by partial differential equation

u_otu
ot ox>

Assuming the initial temperature distribution as u(x, 0) = f(x) = cos 2x, find the
temperature distribution at any instant of time.

u 9%u
Sol. — = !
ot 0x? )
Its solution is u(x, t) = cle‘PZt (c, cos px + ¢, sin px) ..(2)

Since ends of bar are insulated, no heat can pass from either sides and
boundary conditions are

Applications of Partial
Differential Equations

NOTES

ou
gzo atx=0 ..(3)
ou
and gZO atx=m (4D
ou Y .
From (2), = =cqe P (= pcy sin px + pe, cos px)
X
2
At x=0, 0=ce P peg = ¢;=0
From (2), u(x, t)=c,c, e P’ cos px ..(5)
) ou )
Again ™ =—pc,c, e~ Pt sin px
At x=m,
0= —pclc2e_p2t sin pm
= sin pn =0 =sin nn (n € 1)
PR=NT = p=n
From (5), u(x,t)=0b, e~ "t cos nx, where c,c,=0,
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Partial Differential Most general solution is
Equations (PDE)

- _ 2
u(x, t) = 2 b,e " cos nx ...(6)
n=1

NOTES ,
u(x, 0) = cos 2x = Z b, cos nx

n=1
Comparing, we get b, =1 and n=2. All other b/s are zero.

From (6), ul(x,t) =e*cos 2x.

2
Example 27. Solve the equation %—ZL = g—g with boundary condition u(x, 0) = 3 sin
x

nnx, u(0,t) =0, u (l, t) =0, where 0 <x <lI.

Sol. The solution to the equation

ou 0%u 1
e -0
is given by u(x, t) = cle_pzt (¢, cos px + ¢, sin px) ..(2)
From (2), u(0, b) = clc2e_p2t
= 0= clc2e_p2t
= ¢, = 0.
From (2), u(x,t)= clcSe_pzt sin px ..(3)
ull,t)y=0= clcSe_pzt sin pl
= sin pl =0 =sin nn(n € 1)
nm
P=T
_ n’n? ¢ _ n’n’t
From (3), u(x, t) =c cqe ” gin - = be r sin ==
The most general solution is
= _ 2. 2 2 . nimx
u(x, t) = 2 b,e (et )SIDT ..(4)

n=1

From (4), uf(x, 0)= 2 b, sin %
1

‘ S . nmX
= 3 sin nmx = 2 b, sin -
1

Comparison gives, b =3, 1= 1.

n

Hence from (4), the required solution is

i 2,2
_ t .
ulx, =3 2 e "™ sin nmx.

n=1
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Example 28. A bar with insulated sides is initially at a temperature 0°C
throughout. The end x = 0 is kept at 0°C, and heat is suddenly applied at the end x =1

0 . ) .
so that a—u =A for x =1, where A is a constant. Find the temperature function u(x, t).
X

Sol. One dimensional heat flow equation is

a_u: 282u

Its solution is
ux, ) =ce” pic’t (¢, cos px + ¢, sin px)
or u(x, t) = (A, cos px + B sin px) o Pt (2
Applying the zero end conditions as,
u@,)=0=Ae" pe’t
= A =0.
From (2), u(x, t) = B sin pxe” et ..(3)
0
From (3), s = pB cos pxe P,
ox
At x=1 (a—u) = 0 =pB cos ple” P
o ox=1, ox ), , = 0=DpBcosple
= COSpl:O:COS(nn_gJ;nEI or pl=(2n—1)g
s
= p=(2n—1)§‘
From (3), u(x, f) = B sin pye~ Pt ...(4) wherep=_@2n-1) %

The most general solution is

u(x, t) = 2 B,sinpxe " (5) wherep=©@n—1) %

n=1

The end conditions given for this problem are

d
Gu=0atx=0 (ii)a—ZZAatle .(6)

These conditions are different from the zero end conditions. So we add to (5) the
solution
u=Ax+B
Choosing A, and B so that (6) is satisfied.
This gives, 0=B and A =A

ux, t) = Ax + 2 B, sin pxe” pie’t ..(7) wherep=©2n-1) %

n=1

Self-Instructional Material

Applications of Partial
Differential Equations

NOTES

177



Partial Differential Applying the condition that u =0 at ¢t = 0, we have

Equations (PDE) ~
0=Ax+ 2 B, sin px
n=1
NOTES o
or —Ax = 2 B, sin px

n=1

where
n l

M l
_ -2A {x[—cos px)}
l p 0

@ u#oifl— o

@) u=1Ix —x? for t = 0 between x =0 and x = 1.

2
Sol. Solution to %% = % g—‘; is
X

- c%kt

u(x, ) =c,e (c, cos cx + ¢, sin cx)

Eqn. (1) satisfies the condition u # o if [ — o

]
Applying a—Z =0for x=0and x=1to (1), we get

c; =0
nm
and c= 7 nel
_ n’n2kt
_ 2 nmx
u=cicye cos - " a, cos

Again, the second possible solution is
u=c,(cx+cy)

]
Applying a—Z =0forx=0andx=1to (3), we get c, =0

a
Uu=ccy= ?0 (say)
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1
B :ZJ (- Ax) sin px dx, where p = 2n — 1)
0
1
—_[ 1.(
0

— 1 cos pl +l(sin prl
[ p p\ p ),

I
2l

- cos px) dx
b

-2A|-lcospl 1 . 2A(20)* . i
_ +—sginpl|=———"""""  _sin(2n-1D)= =0
l { P p] 12n -1 2 g (7 cospt=0)
- 8A! . m 8Al
=———sinjnn-—|=——"—— (- 1)" (8
n*(2n - 1) ( 2) Zen-12 P ®
AL & 1 _|:(2n—1)2n202t:|
_ - . oy = 472
From (T),  u(y, )= Av+ Z,l [ o 1)2}Sln @n-1) g
0 0%
Example 29. Solve: a—LtL =k B_L; under the conditions
x

0
) -0 forx=0and x =1
0x

()
_ n’n2kt
ﬂe[ r ) 2
l
L) 1ife?2=0

..(4) | From (3)



The general solution is the sum of solutions (2) and (4) for various n.
[nznzkt)
-| =%

Now applying u = Ix —x? for ¢t = 0 to eqn. (5), we get

ux, f) = %0+,;1 a, cos%e .5
Ix —x2 = a?()-i-’;lancos%

1 2

Here, aozzj (lx—xz)dle—

[ Jo 3

_2 l 2 nmx
%‘7_[0 (Ix—x )cosde

412 .
=47 n2n?’ when 7 is even | On simplification
0; when n is odd

oo

9 9 _ n’kt
l 4] 1 nmnx 2
u= E——z 2 —cosTe

2
L
Put n =2m, we get
12 12 - 1 9 B [4m2n2kt)
mimx 12
ux,t) = —-——7% —CcOs———e¢
(e, ) 6 n? z;‘l m*
EXERCISE D
2
(1) Solve: a_u = a—l; ; o constant, subject to the boundary conditions u(0, t) =0, u(xn, t) =
ox
0 and the initial condition u(x, 0) = sin 2x.
2
(i1) Solve: a—l; =q? Zx_l; given that
X
(@ u=0when x=0and x=1[forall (b) u=3sin — when t =0 for all x.

l

(i11) Solve: u, = a?u_, under the conditions u (0, t) =0=u (%, t) and u (x, 0) = x2(0 < x < ).

ou o%u
(1) Determine the solution of one-dimensional heat equation Z o2 where the

ot 0x?
boundary conditions are u(0, ) = 0, u(l, t) = 0 (t > 0) and the initial condition
u(x, 0) = x: [ being the length of the bar.

(i1) Find the temperature distribution in a rod of length 2 m whose end points are fixed
at temperature zero and the initial temperature distribution is f(x) = 100x.

The heat flow in a bar of length 10 em of homogeneous material is governed by partial

diff. eqn. u, = c2u_. The ends of the bar are kept at temp. 0°C and initial temp. is

f(x) = x(10 — x).

Find the temp. in the bar at any instant of time.
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Partial Differential 4.

Equations (PDE)

NOTES
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10.

11.

12.

Find the temperature u(x, ) in a homogeneous bar of heat conducting material of length

x(L—x)d.

L em. with its ends kept at zero temperature and initial temperature given by 5
L

A homogeneous rod of conducting material of length 100 em has its ends kept at zero

. . X, 0<x<50
temperature and the temperature initially is u(x, 0) = 100 —x . 50< x <100

Find the temperature u(x, t) at any time.

Find the temperature u(x, t) in a slab whose ends x = 0 and x = L are kept at zero
temperature and whose initial temperature f(x) is given by

k, when0<x<1L
f) = 2

0, when%L<x<L

Find the temperature distribution in a rod of length © which is totally insulated including
the ends and the initial temperature distribution is 100 cos x.

Find the temperature in a thin metal rod of length L with both ends insulated (so that
there is no passage of heat through the ends) and with initial temperature sin 1'[_1316 in the

rod.

(1) The temperature of a bar 50 cm long with insulated sides is kept at 0° at one end and
100° at the other end until steady conditions prevail. The two end are then suddenly
insulated so that the temperature gradient is zero at each end thereafter. Find the
temperature distribution.

(1) A bar 10 ¢cm long, with insulated sides, has its ends A and B maintained at
temperatures 50°C and 100°C respectively, until steady-state conditions prevail. The
temperature at A is suddenly raised to 90°C and at the same time that at Bis lowered
to 60°C. Find the temperature distribution in the bar at time ¢.

A homogeneous rod of conducting material of length ‘1’ has its ends kept at zero
temperature. The temperature at the centre is T and falls uniformly to zero at the two
ends. Find the temperature distribution.

2Tx, 0<x Sl
Hint: u(x,0) = 1 2
ZT(]-—JC), ESJCS].

2
Solve % =k a—g, such that
ot ox
N L
(@) 0 1is finite when t — oo, ) o 0 when x=0and 6 =0 when x=1[for
all ¢,

(iit) © = 0, when £ = 0 for all values of x between 0 and 1.

. . . .0
Find a solution of the heat conduction equation a—l; =0 8_2 such that
X
(@) wis finite when ¢ — oo, (@) u =100 when x=0 or «t for all values of t,

@@i1) u =0 when ¢ = 0 for all values of x between 0 and 7.

(Here, the initially ice-cold rod has its ends in boiling water.)



13.

14.

10.

11.

12.

13.

14.

Solve the following IBVP: u,=u_, O<x<1, t>0
u, 1) =1, u(l, =2, t=0
u, 0) =1+ x+ 2 sin x

Solve the following IBVP: u,=u_, O<x<1, t>0
u, ) =1, u(l, =3
u(x, 0) =1+ 2x + 3 sin x

Answers
(@) u(x, t) = sin 2x e~ 4 (@) u(x, t) =3 sin

3 hd n
_n (-1 —a?n?t
@) u(x, t) = 3 +4 E 5 — COS nx e

[cznznzt)
2
@) u(x, t)y=— Z—Z cos nm sin e e !
n l
n=1
[02 n2 n2 t)
400 cosnm . nmx 4
t) = sin ——e
(i) ulx, 1) = 21 = .
n=

(2n-1)2 nzczt]

800 1 . @n-Dm ‘{ 100
u(x, t) = 3 E G- 1° sin T e

n=1
@2n -1%n%ch

d x 1 . @n-Dmx ~ 3
u(x, t) = —5 sin e
( ) 1_[3 r;l (2n _ 1)3 L

Qo

OO o 1 @ D _ [(Zm +1en ]2 :
u(x, 1) = 2 — 5 sin mt o, 100
o @2m+1) 100

oo [cznznzt)
4 1 . . 2
u(x, 1) = i 2 = sin? nTnsm nmx e L
1

100 e ! cos x

S am’*n2c?%t
2 4

u(x, 1)———— cos(2mnx)e r
I (4m -1 L

2kt
n+1 —[ )
@) ulx, 1) = —— 200 2 D sin%e 2500

_[cznznzt)
.. 80 1 . nmx 25
1) ux, t) =90 — 3x — — —sin—e
@) ulx, ) - E 5

8T (- 1)"”1 —[(2m - 1)*n%%]
u(x, 1) = E —— 5 sin(@m-Dmx e

o= 200 | ~q2e o ™ 1,
b 21 3 21

400 N sin 2m — Dx —2m-1% ot
x, 1) =100 — — ———e
ue b n n;l 2m -1

2 .
ulx, t)=1+x+ 2 "'sin nx

u(x, ) =1+ 2x+ 3e” ™ gin mx.

3m)? Bt 51 Zkt
ol 3nx 1 Tlg 5mx
cos—+—e cos

X~ (a®n%t/1%)

e

2l

Applications of Partial
Differential Equations

NOTES
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Partial Differential
Equations (PDE) TWO-DIMENSIONAL HEAT FLOW

Consider the flow of heat in a metal plate, in
NOTES the XOY plane. If the temperature at any
point is independent of the z-coordinate and T
. (X, y + dy) (x + 8%, y + dy)
depends on x, ¥y and ¢ only, then the flow is D c
called two dimensional and the heat-flow lies
in the plane XOY only and is zero along the — S
normal to the plane XOY.

B
plate with sides dx and 8y and thickness o. b+ 3x.y)

As discussed in the one-dimensional heat
flow along a bar, the quantity of heat that o
enters the plate per second from the sides

AB and AD is given by

Take a rectangular element of the A T

XV

ko § (a_uJ d —hkosd (auJ
7¢(xxayy and — ko Sy o ).

respectively and that which flows out through the sides CD and BC per second is

kot & (auj d —kos (au) tivel
— RO OX | ~ an — RO Y | 5 respective y.
ay y+38y 0x x+8x

Therefore, the total gain of heat by the rectangular plate ABCD per second

= — kodx (a_uJ — kody (a_uJ + kodx (a_uJ + kody (a_uJ
%/, ox ), %Y )y s 0X )y 5n

.3 3.3

= kodxdy (D)
dx Sy
The rate of gain of heat by the plate is also given by
ou
dxdy — .2
SPOXdy = 2

where s = specific heat and p = density of the metal plate.
Equating (1) and (2), we obtain

&G G, )
0X )yige \OX ), . W )ysy OV, Ju

= spdxdy —
5 5 POy 5

Dividing both sides by adxdy and taking the limit as dx — 0, §y — 0, we get

(a“‘u aZuJ ou
k +—|=sp—

kodxdy

ox?  oy? ot
%u %) ou k
2 - | == h 2= — 3
o ¢ (axz ’ ayZJ ot where e sp (3)

Equation (3) gives the temperature distribution of the plate in the transient
state.
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ou Applications of Partial

Note 1. In steady state, uis independent of ¢, so that % 0 and the above equation reduces to Differential Equations
%u  %u
—g5to5=0 ()
ox oy
NOTES

which is known as Laplace’s Equation in two dimensions.

Note 2. The equation of heat flow in a solid (Three-dimensional heat flow) can similarly
be derived as

NaZ T %2
2 2 2

In the steady state, it reduces to a—l; + a—l; + a—l; =0
ox oy 0z

which is Laplace’s Equation in three dimensions.

SOLUTION OF LAPLACE’S EQUATION IN
TWO DIMENSIONS

Laplace’s equation in two dimensions is

Pu "
0?9
Let u=XY ..(2)
where X is a function of x only and Y is a function of y only, be a solution of (1).
2 92
Then a_u =X"Y and —Z =XY”
ox 2 dy
T , ., X” Y”
Substituting in (1), we have X”"Y+XY”=0 or <~y ..(3)

Now the LHS of (3) is a function of x only and the RHS is a function of y only.
Since x and y are independent variables, this equation can hold only when both sides
reduce to a constant, say k. Then equation (3) leads to the ordinary differential equations

2

2 d2Y
X _kX=0 and S5 +kY=0 ()
dx? dy

Solving equations (4), we get

(1)) When k 1s positive and = p?, say
X =cer +c,e?, Y =c, cos py + ¢, sin py
(i1) When k is negative and = — p?, say
X'=c¢, cos px + ¢, sin px, Y = ¢c,eP” + c,e?”
@iy When k =0
X=cpx+cy, Y=cytcy

Thus, the various possible solutions of Laplace’s equation (1) are:

u = (c,e”™ + c,e)(c, cos py + ¢, sin py) ...(5)
u = (¢, cos px + ¢, sin px)(cq,e™ + c,e??) ...(6)
u=(cx+cy)eyy +c,) ..(T)
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Partial Differential
Equations (PDE)

NOTES

Of these three solutions, we have to choose that solution which is consistent
with the physical nature of the problem and the given boundary conditions. Solution
(6) 1s the required solution.

u(x, y) = (¢, cos px + ¢, sin px) (c, e’ + c,e??).

SOLVED EXAMPLES

Example 30. Use separation of variables method to solve the equation

’u  0*u _
—t+t—5 =0
ox oy
subject to the boundary conditions u(0, y) =u(l, y) = u(x, 0) =0 and u(x, a) = sin %
Sol. The given equation is
2 2
Tu, 9wy e))
ox® dy
Let u=XY ..(2)

where X is a function of x only and Y is a function of y only then,

2 2 2 2 2 2
a_;‘:a_z(XY):Y d }2( and a—uza—(XY)=X d’Y
ox®  ox dx ay?  oy? dy*

From (1), YX”+XY”=0
X/’ Y/’
= + =
X Y
X// Y//
Case I. When =— =p? (sa
X v P (say)
) X// B 9
@) X ~-P
X" p?X =0
Auxiliary equation is  m? —p? =0
m==p
C.F.=cer* +ce?”
Pl =0
X =c e +ce?*
-, _ Y/’ 2
()] vy =P = Y +p2Y =0

Auxiliary equationis m?+p?=0 = m==pi

C.F.=c, cos py + ¢, sin py

PL=0
Yy =4 COS py + ¢, sin py
Now, X@©0)=0
= c,te,=0 = c¢,=—¢
X =0
= @+ e?'=0 = ¢ (@' -e?)=0
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= ¢, =0 | Since e?! —e?i (0 (asp=0=1)
¢, =0
X=0 = u = XY = 0 which is impossible
Hence we reject case 1.
Case II. When X~ Y~ 0 (say)
) X"
® x U
= X"=0 = X=cxte
.. -Y”
Gi) =
= Y'=0 = Y=cy+tcg
Now, X0)=0 = ¢, =0
X()=0
= cl+c,=0 =¢l=0
= c;=0 (Since I # 0)
X=0

u=XY =0 which is impossible
Hence we also reject case I1.
Xll _ Yl’

Case III. When X~ ¥ =—p? (say)
) X/’ B 2
(L) X =—D
2
- X'+pX=0 = LX, 2x_ g
dx?

Auxiliary equation is m?+p?2=0 = m==pi

C.F.=c¢4 cos px + ¢, sin px

PIL=0
X =¢g oS px + ¢, sin px
) Y
(tr) -y - P
" 2
= :{( =p? = 2}}3—1)23(:0.
Auxiliary equation is
m2—-p?=0
m==£p.
C.F.=cy e +c e
PIL=0
Hence, Y=c,e”+c,e?.

Now, X0=0 = ¢,=0
X = ¢, sin px
X =0

¢osinpl=0

Applications of Partial
Differential Equations

NOTES
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Partial Differential =
Equations (PDE)

smpl=0=sinnn, nel

_nn
P=m
. nmx
NOTES X =c¢,,sin 7 ..(3)
Again, Y0)=0
= €1+t =0 = ¢ y=—c¢
nmy _nmy
Y=cp @ —eP)=cy |gl _o 1 .4
nmx
u=XY =¢,,€,, sin - [etrm/h — gCnmylD]
nmx
or u(x, y) = b, sin - [e(rm/D _ ol-nmyiD) ..(5)
nmx nmx
Now, u(x, @) = sin = b, sin - [e(nmalh _ g-(nmall)]
1 1
= bu= g wma = nma
el —o | 2sinh(l)
. nmy
(nmy/l) _ o= (nmylD) sinh (l) .
ulx, y) = nna s - nmna sin l -
2 sinh (l) sinh (l

Example 31. A rectangular plate with insulated surfaces is 8 cm wide and so
long compared to its width that it may be considered infinite in length without
introducing an appreciable error. If the temperature along one short edge y =0 1s given

by

. X
u(x, 0) =100 sin 3 0<x<8

while the two long edges x =0 and x = 8 as well as
the other short edge are kept at 0°C, show thatl the
steady state temperature at any point of the plate
s given by
Y
u(x, y) =100e 8 sin %

Sol. Let u(x, y) be the temperature at any
point P of the plate.
Two dimensional heat flow equation in
steady state is given by
’u  9%u

Its solution is u(x, y) = (¢, cos px + ¢, sin px)(c,e” + c,e?”)

Boundary conditions are
u(0,y)=0=u(@, y)
Lt w(x,y)=0

y e
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u(x, 0) = 100 sin %, 0<x<8
From (2), u,y) =0=c; (c,e™+ce?)
= ¢, =0.
From (2), u(x,y) = c, sin px (¢, e + ¢, e?)
u(8,y) =0=c, sin 8p(c, e” + ¢, e?)

= sin 8p = 0 =sin nx

= pZ%n (nel)

. _nmy
From (3), u(x, y) =c¢, sin T(c3e 8 +ce 8)

nmx s -2
Lt u(r,y)=0=c,sin —— lim (cze ® +cee 8)
y— 8 y—> o
which is satisfied only when
¢y, =0.
B _ry B _my
From (4), u(x,y) = cyc, sin %e 8 =b, sin %e 8
nmx
From (5), u(x, 0) = 100 sin % =b, sin e
= b,=100,n=1.

nx
From (5), wu(x, y) =100 sin (g) e (m/8)

which is the required steady state temperature at any point of the plate.

Example 32. An infinitely long plane uniform plate is bounded by two parallel
edges and an end at right angles to them. The breadth is m. This end ts maintained at
temperature u, at all points and the other edges are at zero temperature. Determine the

temperature at any point of the plate in the steady state.

Sol. In steady state, two dimensional heat

flow equation is 4 Y

%u  9%u
—+—=0 ()
ox® dy
Boundary conditions are,
u(0, y) =0=u(r, y)
Lt ulx,y) =00 <x<m)

Y=o

and u, 0)=u,(0<x<m

0°C Pixy)

0°C

. (3)

(4

..(®)

Applications of Partial
Differential Equations

NOTES

Uo

x
Il
o

Solution to equation (1) is

u(x, t) = (¢, cos px + ¢, sin px)(c,e” + ¢, e?)

From (2), u(0, y) =0=c,(c, e + c,e?)
= ¢, =0.
From (2), u(x, y) = ¢, sin px(c, e™ + ¢, e??)

um, y) = 0=c, sin pn(c, e’ + ¢, e??)

(2

XXV
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Partial Differential = sin pr=0=sin nrn (n € I) ..(3)
Equations (PDE) p=n
From (3), u(x, y) = ¢, sin nx (c,e’™ +c,e’) ..(4)

li (2 =0= 1 % 3 ny 4 1y
NOTES yl_I}L, ux,y) =0=c,sin nx yh_r)rio (cqe c,e™)

which is satisfied only when ¢, =0.
From (4), u(x, y) = cyce™ sinnxy =b e sin nx, where c,c,=b,

The most general solution is

u(x, y) = 2 b, e ™ sin nx ..(d)

n=1

ux, 0) =u, = Z b, sin nx

n=1

2 (m .
where b = —J uq sin nx dx
n T 0

_ 2y (—cos nxjn _ 2uy T

T n 0o N

4u, S
]/, ifnisodd
=Ynmn

0; if n is even

4u — sinnx .
From (5), u(x, y) = —= 2 e (n 1s odd)
T a-i3s5. "

duy 1 .
or u(, y) = =2y sin (2 — 1) x e~ 21—y,
= @2n-1

Example 33. A rectangular plate with insulated surfaces is 10 cm wide and so
long compared to its width that it may be considered infinite in length without
introducing an appreciable error. If the temperature along the short edge y =0 is given
by

d | 20x, 0<x<5
and u® %) = 120010 - x), 5<x<10
and the two long edges x =0 and x = 10 as well as other short edge are kept at 0°C. Find
the temperature u at any point P(x, y).

Sol. In steady state, two dimensional heat flow equation is
0%u N u 0 0
ox?  9y? Ay
Its solution is :
u(x, y) = (¢, cos px + ¢, sin px)(c, e + ¢, e?)

..(2)
Boundary conditions are u(0, y) =0
u(10,y) =0 0°C Pix.y) 497

lim u(x, y) = u(x, =) =0
Yy

d (x. 0) 20x, O<x<5
n (x, 0) =
a uie 20(10-x), 5<x<10 X

e
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From (2),

ux, y) =0=cq(c,e™ + c,e?)

Applications of Partial
Differential Equations

= ¢, =0
From (2), u(x, y) = ¢, sin px (c, e” + ¢, e??) ..(3)
u(10, y) = 0= ¢, sin 10p (c,e™ +c e ™) NOTES
= sin 10p = 0 =sin nn
or 10p =nm(nel
. _nn
P=70"
nny _nmy
From (3), u(x,y) =c, sin %(% el +c,e 10) ..(4)
nmx s -
yh_I)Ilou,(x, y) = ¢, sin 1_0yh§i, (cge 0 +cge 10)
which is satisfied only when ¢, = 0.
nmx -2 -y
Hence from (4), u(x, y) = c,c, sin o e 10 =bH sin % e 10 ..(5)
The most general solution is
c nmx o
u(.)= Y, bysin— e 1 L
n=1
- . nmX
u/(x} O) = ngl bn sin 1—0,
10
where b = ij u(x, 0) sin e dx
" 10 Jo 10
5 10
_1 J' 20xsinﬂdx+j 20 (10 - x) sin 22 dx
51Jo 10 5 10
5 10
nmx nmx nmx
_COSTO 5 _COSTO _COSTO
=4 |{x| ———— —J 1| ————— |dx+{(10 —x) | —————
nn o | nn
10 0 10 10 5
cos "
10 ETY
_ J (_ ) 10 dx
5 nn
10
5 10
sin e 50 10 sin e
:4 E(_5)cosn_n+ﬂ —10 +_cosn_n__ —10
nm 2 nm nn nmn 2 nm nn
i 10 Jy 10 J;
[-50 nm 100 . nm 50 nm 100 . nm
=4|——cos—+——5sin—+—cos——-——|0-sin—
| nm 2 n°n 2 nm 2 n°n
- 00 i 2
n’n? 2
O sin w2 -
From (6), u(x, y) = 8020 Z sin n/ sin T e 10

nt 5 n? 10
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Partial Differential

; 0% 0?
Equations (PDE) Example 34. Solve AL 0, 0<x<m 0<y<m, which satisfies the
ax2 ay2
conditions :
NOTES u(0,y) =u(m, y) =u(x, ©) = 0 and u(x, 0) =sinx.
2 2
Sol. The given equation is 8_1; + 8_1; =0 (D)
ox® dy
Its solution consistent with boundary conditions is
u(x, y) = (¢, cos px + ¢, sin px)(c, e + ¢, e*?) ..(2)
From (2), u(0, y) = 0=c (cse™ + c,e?™)
= ¢, =0.
From (2), u(x,y) =c,sin px (¢, e + ¢, e?) ..(3)
u(m, y) = 0 =c, sin pn(c, e” + c, e??)
= sin pn=0=sin nn (n € 1)
p=n.
Hence from (3), u(x, y) = ¢, sin nx (c,e’™ + c,e”™) = sin nx (Ae™ + Be ™) ..(4)
where cycs=Aand cyc, =B.
From (4), u(x, m) = sin nx(Ae™ + Be'T)
0 = sin nx(Ae™ + Be ")
= 0 = Ae™™ + Be™™"
B 1
= Ae" = _Be "t = — 9 B, (say)
then (4) becomes, u(x, y) = sin nx [— % B,e " e™ + % B, e™ e_”y}
1 . . .
=3 B, [e"™) — e@ ] sin nx = B, sin hn (1 —y) sin nx.
The most general solution is
u(x, y) = 2 B, sin An (n — y) sin nx ..(5)
n=1
u(x, 0) =sin®x = 2 B, sin Anm sin nx
n=1
. 2 (™ . o .
where B, sinh nn=— J sin” x sin nx dx
7 Jo
1 .
= —J (1- cos 2x) sin nx dx
7 Jo
1] . 1, . .
= —j sinnx——={sin(n+2)x+sin (n - 2)x} | dx
T Jo 2
1| -cosnx cos(n+2)x cos(n-2)x]"
T n 2(n+2) 2(n-2) 0
1 1 1 2
= + - =D -1 hen n = 2
2n[(n+2 _— nJ{( ) }:|,W en n
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_8 Applications of Partial

. — when n is odd Differential Equations
B, sinh nn= {nn(n? -4)

0, when 7 is even and # 2

when n =2, NOTES

. 2™ . 9 .
B, sinh 2 = — Jo sin” x sin 2x dx
o

1m . 1 . 1.
:—J (1—cos2x)s1n2xdx:—j sin 2x — = sin 4x | dx
T Jo T Jo 2

T
:l(ﬂ.{.lcosé}xj =0
i 2 8 0

B, =0.

Hence the solution (5) becomes,

ux,y) = —

-8 i sin nx sinh n(m - y)
T =135,

n(n? - 4)sinh nn

or u(, y) = — 8 Z sin 2m - Dx s12nh (2m~ -Dn-y) ‘
T o-tas. @m-D{@2m-1" - 4}sinh Cm - D=
’u  0%u _ . _ ) .
Example 35. Solve 8_2 t— = 0, with the rectangle 0<x<a, 0<y<b; given
x
that

u(x, b) =u(0, y) =u(a,y) =0and u(x, 0) =x(a - x).

Sol. The equation is

02 02
e (D)
ox® dy
Its solution is
u(x, y) = (¢, cos px + ¢, sin px)(c,e™ + c,e?”) ..(2)
u0, y) = 0=rc (cqe™ + c,e™)
= ¢, =0.
From (2), u(x, y) = ¢, sin px (¢, e + ¢, e?) ..(3)
u(a, y) = 0=c, sin ap (c, e + c,e™)
= sinap=0=sinnn (ne I)
nm
= ap=nm or p=-—.
a
nmy _nmy

. nmx, - —
From (3), u(x,y)=c,sin —(cze ¢ +cqe * )
a

o nmy nmy
. n - I
u,y)=sin —(Ae® +Be @) ..(4)
a
where c¢,c,=A and c,c, =B
nnb _nnb

u(x, b) = sin ﬂ(AeT +Be @)
a

nnb nnb

O: Sin ﬂ(AeT +Be T)
a
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Partial Differential nmb _nmb
Equations (PDE) = Ae o + Be a =
nrb -y
Ae® =—Be @ =—§ B, (say).

NOTES Then (4) becomes,

nnb  nmy nnb  nmy

u,(x,y)zsinﬂ—Be @ ed +=-Be%e ¢
a 2 2

=—B, sin 2% 2sinh 2 b-y) =B, sinﬂ sjnhn—n b-y).
2 a a a a

The most general solution is

u(x, y) = 2 B, sm—smh— b-y) ...(D)

n=1
Applying to this the condition u(x, 0) = x(a — x), we get
From (5), ux, 0) = Z B, sinhn—nbs n

nol a a

= x(@—x) = 2 B, sinhn—nbsinﬂ

nol a a

. nmn 2 (e . nm
where B sinh —b = —J x (@ — x)sin — x dx
a a Jo a
a

nmn nm
9 —CoS — X a -CoS — X

=21 (ax - x?) n—a —'[ (@a—2x).| ——2—|dx
a 0

nm
2 sm — x sin —x

= = a-20)—9— j(— 9| —a

a a

=——-—— | | = a (1 —cos nm)
nm nm nn n’n?® nn

= 1—(-D"] = {33 when n is odd
when n is even
8a?

B, = smh( )( 313)

0, when n is even

when n is odd
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8a? sin © nm
From (5), u(x,y)=—5 ———&——.sinh—(b-)
T n=135. n°sinh—b a
a
(n 1s odd)
. 2n +1
8g? & 1 sinh P17 )n(b—y)
or ulx, y) = — 5 sin(2n +1) —. (2‘1 .y
noo (2n+1) a sinh * TP Ty

a

Example 36. A thin rectangular plate whose surface is impervious to heat

flow has at t = 0 an arbitrary distribution of temperature f(x, y). Its four edges x =0, x
=a,y =0,y =0 are kepl at zero temperature. Determine the temperature at a point of a

plate as t increases. Discuss the problem when f(x, y) = sin (“xj Sin(gj'
a

Sol. Two dimensional heat flow equation is

Pu e 1w
ox?  y? cr ot y=b
Boundary conditions are c B
u@©,y, ) =0=ula,y, b
u@, 0, ) =0=u(x, b, 1) (ﬁ (I‘f
and ux,y, t)=f(x,y) att=0. * x
Let the solution be 1w =XYT
where X is a function of x only, Y is a function (0] y=0 A X
of y only and T is a function of ¢ only.
a_u = i(XYT) =XY d_T
ot Jt dt
0%u 9% d?X
— =—XYD)=YT —
oxZ o dx?
2 2 2
a—Zza—z(XYT)=XT d Z
dy” dy dy
1
From (1), YT X"+ XTY” = —(XYT")
c
X/l Y'/l T/
= X +?ZCZT (2)
There are three possibilities:
) X”_O Y”_O T/ _O
(1’) X - Yy Y - Yy C2T -
X” Y” T/
. ) _ %2 — )2
(“’) X Kl ’ Y K2} C2T K
. ” Y” T/
@ir) =-K2 Y =-KZ 2T =_K2
where K? =K? + K2.

the physical nature of the problem.

Of these three solutions, we have to select the solution which is consistent with

Applications of Partial
Differential Equations

NOTES

The solution satisfying the given boundary conditions will be given by (iii).
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Partial Differential
Equations (PDE)
NOTES
where
or

194 Self-Instructional Material

Then, X =¢, cos Kjx + ¢, sin K x
Y =¢, cos K,y + ¢, sin K,y
T= 058_ c?K%t
u=XYT
= u(x, y, t) = (¢, cos K,x + ¢, sin K x)(c, cos K,y + ¢, sin K2y)(059“32K2t)
..(3)
_ N — . - c?K?%t
u(0, y, 1) = 0=c,(c, cos Kyy + ¢, sin K,y)c.e
= ¢, =0.
From (3), u(x, y, t) = ¢, sin K x(c, cos K,y + ¢, sin K2y)(05e_‘:2K2t)
= ¢4 sin K x (¢, cos Kyy + ¢, sin Kyy)(e™ Cszt) ..(4)
CoCs5 = Cg
From (4), u(a, y, t) = 0=c,4 sin Kja(c, cos Ky + ¢, sin K2y)e_02K2t
= sin Kia=0=sinnn (n € I)
nm
K, =—.
a
. nnx ) _
From (4), u(x, y, t) =cg sin Y (¢, cos Ky + ¢, sin Kyy) (e c*K’t) ..(5)
u(x, 0, 1) = 0 =c, sin 2% ¢ o= ’K
a
= ¢y, =0.
From (5), u(x, y, t) = c,c, sin %sin Kyye™ K’ ...(6)
u(x, b, 1) = 0=cyc, sin I in Kobe™ K’
a
= sin K,b = 0 =sin mn (m € )
K,b=mn
mmn
= K=
From (6), wu(x,y,t) =csc, sin I in any e <K
a
= A, sin 25 gin T - etk (D)
a b
| where cqc,=A,
2_2 2_2
But, K2=K2+Kp2="T_ 20
a b
2 2
9 _ _oln”  m
K —— (? + b—zj



equation (7) becomes,

O . MMX . MUYy _2g?
ux, y, ) = 2 2 A, s1n—a s1n—bye " K mnt )

m=1n=1

By using K

mn’

is the most general solution.

N - . ™ . TC
u(x, y, 0) = flx, y) = Z Z A, sin nT sin %

m=1n=1

which is the double Fourier half-range sine series for f(x, ).

2 2 fe b . .
where A =—.—j J smﬂsm mry
mr g b Jdx=0Jdy=0 a b

flx, y)dx dy.

When  f(x, y) =P sin (E) sin (n_y)

b
A = ggj.a sinﬂsinm—mﬁsinﬂsmn—ydxdy
a bdx=0Jy=0 a b a b
4 .
= —BJ.a sm—sm—de. sin mry smn—ydy
ab 70 a a 0 b b

_ B [ ™ E}
ab-l.O cos (n l)a cos(n+1)a dx

X J.s [cos (m- 1)1Z—y —cos (m + 1)2—37} dy

B sin(n—l)E sin(n+1)E
a _

- P a
b - @+D®
a a 0
i ny T
sin (m — 1)—y sin (m + 1)—y
« b b
i i
-1)—- +1) -
(m-1) b (m+1) 5 o
=£ .0=0 ("~ sin nm =0 and sin mmn = 0)
ab
Hence from (8), y (x, y, t) = 0 when f(x, y) = sin ™ gin W
a
. %u u . .
Example 37. Solve the Laplace equation 6_2 + W =01in a rectangle in the xy-
X
plane with u(x, 0) =0, u(x, b) =0, u(0, y) = 0 and u(a, y) = [(y) parallel to y-axis.
Sol. The given equation is

Pu 1
axz ayz - ( )
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Partial Differential Let u=XY ..(2)
Equations (PDE) where X is a function of x only and Y is a function of y only. Then,
Pu_ P
NOTES ox® o
2 2
and a_L; - a_z (XY) = XY”
d®  dy
From (1), YX” + XY” = 0 o x 3
Y// X//
Case L. When v - X =p? (say)
Yl/
. _ o9
@) Y ~P
= Y - p?Y =0
Auxiliary equation is
m2—-p?=0 = m==p

196  Self-Instructional Material

C.F.=ce” + ce?”

PIL=0
Y =ce” +c,e?”
Xl/
. B _ o9
@i1) X P
= X"+ p?X =0

Auxiliary equation is
m>+p?=0 = m=x=pi
C.F. = ¢, cos px + ¢, sin px

PI1.=0
X =¢, cos px + ¢, sin px
Now, Y0)=0
= ¢, te,=0 = c¢,=-¢
Yb)=0
= c,etb+c, et =0
= c,(erb —erb) =0
- ¢, =0 Since e?? —e ™% %0
(asp#0#b)
Y=0 = u=XY=0 which is impossible.
Hence, we reject case 1.
Case I1. When I; =_ }}(( =0 (say)
) Y”
0) 7 -
= Y'=0 = Y=c,+cyy
.. X”
) - =
= X'=0 = X=c,+cgx



Now, YO0O) =0 = ¢,=0

Applications of Partial

Yb)=0 = ¢b=0 = ¢,=0 | = b#0
Y=0
u = XY = 0 which is impossible NOTES
Hence, we also reject case I1.
Case II1. When l; =— }}(( =—p? (say)
@ :{{ =-p?
= Y +p2Y=0
Auxiliary equation is
m?+p?=0 = m =% pi
C.F. =¢g cos py + ¢, sin py
PL=0
Y =¢g cos py + ¢, sin py
1) —))((” =-p? = X'-pX=0
Auxiliary equation is
m2—p?=0 = m==p
CF.=c e +c, e
PL=0
X=c¢, e +c,e?
Now, YO) =0 = cg=0
YO)=0 = ¢, sinbp=0
smbp=0=sinnn,nel
nm
P=T
nmx nmx
Hence, u=XY =c¢,,sin nbﬂ [cn eb + clze_bJ (4
Now, u(0, y) =0=rc¢,, sin nbﬂ (cy; T ¢y9)
= ¢ T e =0 = c¢p=—cyy
ne
From (4), u(x,y) =c¢,,¢,; Sin nbﬂ (e bo-e ? ]
= b, sin 7 sinh 7 ..(5)
| where b, =2 ¢, ¢,
Most general solution is
u(x, y) = 2 b, sin%sinh% ..(6)
n=1
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Partial Differential
Equations (PDE)

NOTES

Now, ua, y) = f(y) = Z{ b, sin%sinh%
., nma 9 b i
sinh — - = Ty
where ( b )bn b jo f(y) sin b dy
b
= b = 2 jo f(y)sinnbﬂ dy. (7
bgnh(”za)

Example 38. Find the steady state temperature distribution in a rectangular
thin plate with its two surfaces insulated and with the conditions u(0, y) =0, u(x, 0) =0,
u(a, y) = 8(y), u(x, b) = f(x).

Sol. Superposition applied to boundary conditions dismantles the given problem
to solution of two simpler problems each of which can easily be solved by the method of
separation of variables.

(0, by cp——&) B (a, b)

0|  Vu=o0 |gW)

o = i »X
(a,0)
AY / \ AY
c 1) B c 0 B
2 + 2
0° Vu,=0 |0° 0° Viup=0 | 9ly)
o o X »X o o X »X
Now, the following two problems are required to be solved:
2 2
Problem 1. J u21 + J uzl = 0 subject to conditions
ox ay
u,(0,9) =0, uy(a,y) =0, u(x,0)=0, u,(x, b) = f(x)
2 2
Problem 2. J uzz + J uzz = 0 subject to conditions
ox ay
uy (0, y) = 0, uy(x, 0) = 0, uy(x, b) =0, uy(a, y) = 8()
Let us now proceed to solve problem 1.
u,(x, y) = (¢, cos px + ¢, sin px) (c,e™ +c, e ) ..(1)
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u,(0,y) =0=c, (ce” + ce?)
= ¢, =0
u,(x, y) = ¢, sin px (c,e™ + c,e ™) ..(2)

u,(a,y) =0=c,sin pa (c,e” + c,e ™)

= smap=0=sinnn (el

nm

D=
a
nmy _nmy

_ . nmnx a +c, e a

Hence, from (2), u,(x,y) =c,sin — |Cze 4 ..(3)
a

. nmx
u,(x, 0)=0=c,sin 0 (c, +c,)

= c,te, =0 = c¢,=-c,y

mmy _nny
. nmx a _, a . nmX . . nmy
u, (x, y) = cycasin —— | € € =2c¢yc,8in —— sinh —
a a a

. nmx . nmy
=b, sin —— sinh —— where b, = 2c,c,
a a

Most general solution to problem 1 is

. . nmx . T
u,(x, y) = nzﬂ b, sin _na sinh —nay (4
N . . b
Now, uy(x, b) = f(x) = 2 b, sin ™% ginh 12
~ a a
mh 2 re .
where b, sinh m_2 j f(oc)smm dx
a a Jo a
a
= b= —2— [ f@)sin ™ d .(5)
" . nmb ) JO a
a sinh ()
a
Similarly, the most general solution to problem 2 is
- . (nmy) . nmx
u, (x,y) = ’; B, sin (Tj sinh (T) ...(6)
2 b . (nmy
where B, = — j g(y)sin (—) dy )
bsinh (”b) 0 b

| Interchanging x by v, a by b and f(x) by g(y)
Hence, the required solution to the given original problem is

ux, y) = u (x, y) + uy(x, y)
-y [bn sin (ﬂj sinh (_yj
ol a a

+ B, sin (nTTEyJ sinh (%H

Self-Instructional Material
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Partial Differential 9 a i
Equations (PDE) where b = ———— '[0 f(x)sin — dx
a

a sinh (nnb)

a

b
NOTES and B, = 2z .[0 g(y) sin ﬂdy‘
b sinh (”Z“) b

EXERCISE E

1. Along rectangular plate of width a em with insulated surface has its temperature v equal
to zero on both the long sides and one of the short sides so that v(0, y) =0, v(a, y) =0,

lim v(x,y) =0 and v (x, 0)=kx

Y=o

Show that the steady-state temperature within the plate is

oo +1 [Py
2ak - e ) . nmx
U(x,y)szTe smT,
n=1

2. A square plate is bounded by the lines x =0, y = 0, x = 20 and y = 20. Its faces are
insulated. The temperature along the upper horizontal edge is given by u(x, 20) = x(20 — x)
when 0 < x <20 while other three edges are kept at 0°C. Find the steady state temperature
in the plate.

3. A rectangular plate has sides @ and b. Let the side of length a be taken along OX and
that of length b along OY and the other sides along x=a and y=b. The sides x=0, x=a

X
and y = b are insulated and the edge y = 0 is kept at temperature u, cos o Find the

steady-state temperature at any point (x, y).
[Hint: Boundary conditions are (u) _,=0, (u) _,=0, (uy)y:b =0 and u(x, 0) = u, cos (mx/a)]

4. The temperature u is maintained at 0° along three edges of a square plate of length
100 em and the fourth edge is maintained at 100° until steady-state conditions prevail.
Find an expression for the temperature u at any point (x, y).

Hence, show that the temperature at the centre of the plate

_ 200 1 1 1 B
T on b 3n bn |
cosh — 3cosh— 5cosh —
2 2 2

5. A rectangular plate is bounded by the lines x =0, y =0, x = @, y = b. Its surfaces are
insulated and the temperature along the upper horizontal edge is 100°C while the other
three edges are kept at 0°C. Find the steady state temperature function u(x, y) and also

the temperature at the point (% a, % b}.

2 2
8_12t+8_12t=0 in a rectangle with u(0, y) = 0,
ox oy
u(a, ¥) =0, u(x, b) =0 and u(x, 0) = f(x) along x-axis.

6. Solve the following Laplace equation

7. Solve the boundary value problem:

82_u+82_u_0 0<x<a,0<y<d
n? ot T ThEEYE
with the boundary conditions:
u 0, y)=u/la,y = uy(x, 0) =0 and uy(x, b) = f(x)
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10.

11.

10.

11.

%u
P + ? = 0 subject to the conditions u(0, y) = 0, u(x, 0) = 0, u(l, y) = 0 and

u(x, 1) = 100 sin mx.

Solve

2 2
Solve g—l;+gy—l; = 0 subject to the conditions u(0, y) = 0, u(a, y) = 0, u(x, 0) = 0 and
X

u(x, b) = x.

’u 0% ] N
P +$ = 0 subject to the conditions u(x, 0) = 0, u(x, 1) = 0, u(w, y) = 0 and
u(0, y) = uy,

The initial temperature distribution in a square plate of unit length is 100°C. Find the
temperature distribution u(x, t) if all the sides are maintained at zero degree temperature.

Solve

Answers

e wn@n-Drx . 2n-Dmy
u(x y) _ 3200 z sSin 20 sin 20
” 3 (2n - 13 sinh (2n - D=

n=1

u(x, y) = u, cos ™ cosh & (b y) sech —b
a

. N2 NG
400 & s1n{(2m l)a}smh{(Zm l)a}

uGey)= == B
n=1 (2m — 1) sinh {(Zm -1 7}
a
(1 1 ) 200 1 1
ul—a,—a|=——
2 2

T | cosh (@) 3 cosh (3nb)
2a 2a
u(x, y) = 2 B, sin (n;rx
n=1

where B =———F—~ f(x) sin ™ dx
a sinh ( )
a

) sinh nn b-y),
a

a
My _nwy
u(x, y) = z b, cos—nx e ® —e 2@ |where, bnz—J‘ f(x)cos—dx
n=1 nm cosh ——
a
u(x, y) = 100 sin mx (s1'nh ny]
sinh 7t
. cosnm sin(m] sinh(nny]
- 2a a a
u(x, y) = > -
n=1 n sinh | %
a
- (-1
u(x, y) = 2 { b }e’”‘x sin nmy
400 & <« (l-cosnm)(1—-cosmn
ulx,y, )= —5 2 2 ( " j( m j sin nmx sin mnye_czk'z"lt
n =1m=1 n m
where k2 =m (2+m)
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Partial Differential

Equations (PDE) LAPLACE EQUATION

Laplace’s equation has wide applications in Physics and engineering. The theory
NOTES of its solutions is called the potential theory and its solutions are called harmonic
functions. The solution of Laplace’s equation, subject to certain boundary conditions,
is simplified by a proper choice of coordinate system.
Note 1. If the problem involves rectangular boundaries, we prefer to take Laplace’s
2 2 2 2 2
equation in cartesian coordinates given by 8_124 + 8_124 =0 and 8_1; + 8_124 + 8_124 =0.
ox dy ox dy 0z
Note 2. If the problem involves circular boundaries, we prefer to take Laplace’s equation
in polar coordinates given by

az_u+la_u+i&:0
o2 ror oo

This equations can be obtained from u,  +u, =0 by putting x=rcos 0, y =r sin 0, thus
changing the independent variables from (x, y) to (r, 0).

Note 3. If the problem involves cylindrical boundaries, we prefer to take Laplace’s
equation in cylindrical coordinates given by

az_u+la_u+iaz_u+az_u:0
o2 ror 2002 022 ‘

This equation can be obtained from u__ + u, tu, =0 by putting x=rcos 0, y =r sin 6,
z =z, thus changing the independent variables (x, y, 2) to (r, 6, 2).

Note 4. If the problem involves spherical boundaries, we prefer to take Laplace’s equation
in spherical polar coordinates given by

Puzou 1 w1 P
ot ror r? 30 r2 00 r2sin20 8(1)2

This equation can be obtained from u, +u, +u_=0 by putting,

x=rsin Ocos ¢, y=rsin 0 sin ¢, z=r cos 6,

thus changing the independent variables (x, y, 2) to (r, 0, ¢).

SOLUTIONS OF LAPLACE’s EQUATION

(a) Solution of Laplace’s Equation in Two-dimensional Cartesian Form

2 2
We have already discussed the solution of z—g + 8_1; =01n Art. 2.16.
X
(b) Solution of Laplace’s Equation in Polar Coordinates
2 2
Laplace’s equation in polar coordinates is r? a_u +r a_u + a_u =0 (D)
or? or 082
Let u(r, 6) = R@)F(®) or simply u = RF (2

where R is a function of r only and F is a function of 6 only, be a solution of (1).
Substituting it in (1), we get
FR'F+rRF+RF’=0 or (?R”"+rR)F+RF”"=0
2 ” ’ ”
Separating the variables, % =— FF = constant = & (say)
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Thus, we get ordinary differential equations Applications of Partial
Differential Equations

2
AR AR o
dr dr
d’F
and 207 +kF=0 ..(4) NOTES
Now (3) is a homogeneous linear differential equation.
2
Putting r = €2, (3) reduces to 7 1: —kR=0 ...(0)
r

Solving (5) and (4), we get
(@) When k is positive and = p?, say
R=cer*+ceP*=cP +e,r?,
F =c, cos pO + ¢, sin po.
(1) When k is negative and =— p?, say
R=¢; cos pz+ ¢, sin pz=c, cos (p log r) + ¢, sin (p log 1)
F=c,er? + ce??

@iy When k =0 R=ciz+c,=c logr+ec,
F=c0+c,
Thus the three possible solution of (1) are
u = (c;1¥ + c,r?)(c, cos po + ¢, sin po) ...(6)
u=[c, cos (p log r) + ¢, sin (p log 1] (c,er® + c,e*®) ..(D
u=(c;logr+cy)cyd+c,) ..(8)

Of these solutions, we choose the one which is consistent with the physical nature
of the problem.

Note. Usually we require a solution extending up to the origin.

Since u must be finite at the origin, we reject solutions (7) and (8). Also from (6), ¢, =0.

In this case, the solution may be written as
u = (A cos pd + B sin pO)r?

The general solution will consist of a sum of similar terms with different (arbitrary)
values of A, B and p.

(¢) Solution of Laplace’s Equation in Three-dimensional Cartesian Form

Laplace’s equation in three-dimensional cartesian form is

— t + =0 (1
ox?  y? 022 M
Let ul(x,y, 2) = X(x) Y(y) Z(2) or simply u=XYZ ...(2) Dbe a solution of (1).
Substituting it in (1), we get X"YZ + XY"Z + XYZ" =0
Dividing to XYZ, we get X + Y + Z" _ 0
X Y Z

1 d*°X 1 d°Y 1 d*Z
=. +—=. +=. =
X ' dx? Y dy2 7 dz?®
which is of the form F,(x) + F,(y) + F,(2) = 0.

Since x, y, z are independent, this is possible only when I, F,, F', are constants.
Assuming these constants to be k2, I2 and —(k? + [?) respectively, (3) gives rise to the
following equations:

2 d%Y 2
X _ex=0 %5 -rv=0%Z @2+ P7=0
dx dy dz*
Their solutions are X = ¢, + c,e™, Y = ¢,e? + ¢,e™”

Z=c,cos (k2 +12) z + cg sin (k2 + %) 2

. (3)

or
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Partial Differential Hence a solution of (1) is

Equations (PDE)
u = (¢, + c,e ™) (e el + c e )c, cos /(B2 +1%) 2z + cg sin /(B +1%) 2]
Since, the three constants could have been taken as — k2, — 12 and k% + /2, and
NOTES alternative solution of (1) is

[2 . 72 _ 2, 72
u=(c, cos kx + ¢, sin kx)(c, cos ly + ¢, sin ly) [c.e k+l0z cge kol )z]
The choice of the constants and hence the general solution depends on the given
initial and boundary conditions.

(d) Solution of Laplace’s Equation in Cylindrical Coordinates

Laplace’s equation in cylindrical coordinates is

0%u 1 lou 1 0% d%u

ol ror o rZ 902 922 D
Let u(r, 0, 2) = R(NF(0)Z(2)
or simply u = RFZ ...(2) be a solution of (1).

1 1
Substituting it in (1), we get R"FZ + - R'FZ + pel RF”Z +RFZ”" =0
Dividing by RFZ, we get

1(d’R 1dR| 1 d°F 1d°2 )
dr? r dr r’F do?  z dz?
2 2
Assuming d E =—n2F and d—g = k%7 (4
dz
2
Equation (3) reduces to (d 1 d—RJ - n_z +k2=0
dr? r dz r
d R dR

or

02 . + k%42 -nHR =0
This is Bessel’s equation. Its solution is R =c¢,J, (kr) + ¢,Y (k1)
The solutions of equations (3) are F =c¢, cos n® + ¢, sin nb, Z = c5ek2 + cGe*kZ
Hence a solution of (1) is u= [¢,J, (kr) + ¢, Y, (kr)] (c, cos nb + ¢, sin 11/6)(c5ek2 + CGe*kZ)
which is known as a cylindrical harmonic.
(e) Solution of Laplace’s Equation in Spherical Coordinates

Laplace’s equation is spherical coordinates is

’u 20du 1 0%°u cot6 ou 1 ’u
N2 St etz 3tz 2 2 (1)
o ror r’op r° 00  r°sin“0 9o
Let u(r, 6, o) = R(r)GO)H(0).
or simply u = RGH (2 be a solution of (1).
Substituting it in (1) we get
1
R'GH + = R’GH = L rarmn+ 0 R+ ———— RGO =
rZsin? 0
Dividing by RGH, we get
2 2 2
1f,2dR o dR) 114G 1edG), 1 dH_, -
R dr dr | G\ do d0 ) Hsin?6 do?
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2 Applications of Partial
Putting l r? d’R + Zrd—R =nn+1) ..(4) Differential Equations
R dr? dr
1 d*H
d el =—m? ..(d
o Hdo? © NOTES
2
Equation (3) reduces to ((ZZG(Z} +cot O % + [n(n+ 1) — m?2 cosec? 8] G=0
This is associated Legendre’s equation and its solution is
G =¢,P" (cos 0) + ¢, Q" (cos 6)
The solution of (5) is H =c, cos mo¢ + ¢, sin m¢
To solve (4), assume that R =r* so that
Rk-—1D+2k=nm+1) or k*2—n?)+&k-n)=0
or k-n)yk+n+1)=0 .. k=nor-n-1

Thus R=cg"+cgr—"1

Hence, the general solution of (1) is

u= Z Z [c, P (cos 0) + ¢, Q" (cos )] (c, cos m + ¢, sin m)(c 1" +c,r "~ 1y

n=0 m=0

Any solution of (1) is known as a spherical harmonic.

SOLVED EXAMPLES

Example 39. The diameter of a semi-circular plate of radius a is kept at 0°C
and the temperature at the semi-circular boundary is T°C. Show that the steady state
temperature in the plate is given by

T~ 1 (r\Y
u(r, 6)=7Z on—1\a sin (2n—-1)0.
n=1

Sol. Take the centre of the circle as the

T°C
pole and the bounding diameter as the initial
line. Let the steady state temperature at any
point P(r, 0) be u(r, 0), so that u satisfies the . Ff, 0)
equation ;
2 2 >
r28_u+r8_u+8_u =0 (1) A 0C O oC B X
or?  or  06” 6=0
Let u=RT .2
where R is a function of r only and T is a function of 6 only.
ou d dR
—=—@RD=T—
or or (RT) dr
2 2
P2 [ dR) gL
or2 or\ dr dr?
%u 92 d*T
—=—-(RT)=R .
20> 007 de*
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Partial Differential s From (1), r?TR”+rTR"+RT”=0
Equations (PDE)
27 ’ ”
R + R T 27 ’ ”
ra 4, -9 » I'B4R T

R T R T

NOTES
r’R” +rR’ _.r

Case I. When 7 T =p? (say)

r’R” + rR’ o,
— = =D

@) R = r’R’+rR' —p?R=0.

Put r =e*so that z=1log r and let D = di then above equation reduces to

2
DO-1)+D-pAR=0
D*-pHR =0
Auxiliary equation is m2—p?=0 = m==£p
C.F.=cer*+ ce??

= p log r plogr — o pp P
c,e +cqe crP+cyr

PI.=0.
R=c¢rP +c?
. ™ 9
(1) T - p
AT
+p°T=0.
a?
Auxiliary equation is m?+p?=0
= m==pi
C.F.=c¢, cos pb + ¢, sin pO
PI.=0
T = ¢, cos pO + ¢, sin po
u(r, 0) = (¢, + cyr?)(cy cos pO + ¢, sin po) ..(3)
2 ” ’ ”
r'R”+rR T
C II. Wh, —_— = =—p? (sqa
ase en R T p° (say)
0 r’R” + rR’ _ 2
—x -
= PR”+rR +p?R=0
Put r =e* so that z=1log r and let D = di then above equation reduces to
z
[DO-1D)+D+p?lR=0
D?+pHR =0.
Auxiliary equation is m?+p?=0
m==pi

C.F. = (c; cos pz + ¢4 sin pz)
PL=0
R = ¢, cos pz + ¢, sin pz
=c; cos (p log r) + ¢, sin (p log 7).

206 Self-Instructional Material



@)
=

Auxiliary equation is

Hence,

Case II1. When

r’R” +rR’ A

T/’ _ 2
T p
7 5 d’T
- _p?T=0.
T p-or do? p
m2—p2=0
m==p
C.F.=c.er®+cger?
PI =0.

T = c.er® + cge?b.
u(r, 0) = [c cos (p log ) + ¢, sin (p log 1)]
(c,e® + cge™P)

= 2
7 T (say)

@) r’R”+rR’ =0.
Put r =e*so that z=1log r and let D = %, then above equation reduces to
[DDO-1)+DJR=0
D?R=0
Auxiliary equation is m?=0
= m=0,0
CF.=(cg+c,2) e =cy+clogr
PIL=0
R=cq+c,logr.
. T”
(1) - =0
= =0
= T= ¢y T Cy50.

u(r, ) = (cq + c;plog 1) (¢;; + ¢,,0)

the given boundary conditions.

and

Boundary conditions are

u(r,0)=0
u(r,m)y=0
u(a, ) =T

u—0asr—0

Solutions (4) and (5) do not satisfy boundary condition (9).

Hence, the consistent solution is

From (10),
=
From (10),

u(r, 0) = (c;17 + ¢c,r?) (¢, cos po + ¢, sin po)
u(r, 0) =0=(c;r” +cyr?P) cy

c, = 0.

u(r, 0) = (c;1” + ¢,r?) ¢, sin po

u(r,m) =0=(c;1? + c,r?) ¢, sin pn

(4

..(®)

Of these three solutions (3), (4) and (5), we choose the solution consistent with

...(6)
(7
(8
.9

...(10)

..(11)

Applications of Partial
Differential Equations

NOTES
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Partial Differential = smprn=0=sinnn (ne I)

Equations (PDE) p=n.
From (11), u(r, 0) = (¢, + ¢;r™) ¢, sin no ..(12)
NOTES Condition u — 0 as r — 0 is satisfied only and only when ¢, = 0.
Hence from (12), u(r, ©) =c,c,r" sinn® = b, r" sin no.
The most general solution is
u(r, 0) = 2 b, r" sin no ...(13)

n=1

u(@,9)=T= 2 b, a" sin no

n=1

2 (" .
where b, a"=— jo {T sin n6 d0}
o0

2T (—cosnb )"
:_(ﬂj :E(I—COS ;m‘c)
T

n 0 nm

4T

2T - i
2 Gyl nisodd
nmn

0 ; niseven

; nisodd

0 ; niseven

4T 1 r .
From (13), ur, 0) = — Z —.r—nsm no
T a-135.0 @
AT oo 1 2n-1 .
u(r, 0) = - Z m(%) sin (2n — 1)6
n=1

which is the required steady state temperature in the plate.
0’V 19V 19’V
o v or " r? 007
@) Vis finite whenr — 0 @) V=XC cosnbonr=a.
Sol. Solution to given differential equation is
V=X@A,r+B,r") cos b+ )

When r =a, V=xC, cos nb

2C,cosn0=2A a"+B a™) cos (nb+ o)
. C,=A,a"+Ba" a=0
When r — 0, V is finite.

B,=0 (otherwise V becomes )

C
A=

Example 40. Solve: =0 with boundary conditions

a

V=xC, (L) cos no.

208  Self-Instructional Material



Example 41. The edge r = a of a circular plate is kept at temperature f(0). The  Applications of Partial
plateis insulated so that there is no loss of heat from etther surface. Find the temperature Differential Equations
distribution in steady state.

Sol. Here, we have to take the solution in polar coordinates.

L NOTES
The solution is

u = (c, cos po + ¢, sin po) (c,r’ + ¢, 1?) ..(D
Since, the temperature remains finite at r =0

c,=0 .2

Also, if we increase 0 by 2rn, we arrive at the same point. So the solution (1)
should be periodic with period 2m.

Therefore p = n, an integer. Hence, we may write the general solution as

u= 2 (¢ cosnb +cy sin nb)c,y 1"
n=0

= 2 (A, cosnb+B, sin nd)r" | c;ea=A cyc, =B, (say)
n=0

Applying to this, the condition
u=f0 for r=a, weget

£(0) = 2 (A, cosnb +B, sinnB)a”

n=0
1 (2n

where a* A =— J f(0) cos n6 d6
7 Jo
1 (2n .

and a'B, =— J f(0) sin n6 do
7 Jo

Example 42. Find a harmonic function ¢ in the semi-circler <a, 0 <0 <mwhich
vanishes on 0 = 0 and takes the value ¢ on 6 =1 and on the curved portion r = aq.

Sol. A harmonic function is a function satisfying Laplace’s equation.

Solution to 12 ii)-i- r@Jraz—i) =01is
or or 090
0 = (A cos pb + B sin p6) (Cr? + Dr?) NE))
Sincep - 0asr—0 .. D=0
0 = (A cos p6 + B sin p6) Cr? (2

Imposing on (2), the zero boundary conditions
o, 00=0 and o(r, 1) =0, we get
A=0 and p=n@mel)
Putting in (2) and adding up various solutions for n =1, 2, 3,..., we get

0= i B, r" sin nb ..(3)

n=1
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Partial Differential This solution will not satisfy both the given boundary conditions of the problem
Equations (PDE) namely

@) 0=0when0=0 }
and (i) 0=cwhenb=n ..(4)

So we add to (3), the solution ¢ = A6 + B, which satisfies Laplace’s equation.
We choose A, B, so that (4) is satisfied.

NOTES

Then, B,=0 and c¢=An
0 - . e
Hence, o= Ly 2 B,r" sin n6 ...(5) satisfies (4)
n n=1

Applying to (5), the condition that ¢ = ¢ when r = a, we get

IR .
c=—+ Z B, a" sinnd
i
n=1

= c (1—2): 2 B, a" sinnb
n
n=1
T
Bnanzg c(l—g)sinnedﬂ
n Jo n
2 2
B a"=— = B =— ..(6)
nm nma

From (5) and (6),

0 2cw 1 "o
p=0, 2 _(Lj sin 0
T nn=1n a

EXERCISE F

1. Show that the steady state temperature distribution in a semi-circular plate of radius a
whose bounding diameter is kept at 0°C, while the circumference is kept at 60°C is
given by

=

240 1 (et
u(r, 0) = T r;l m (;) .sin (2n — 1)0.

2. A semi-circular plate of radius a has its circumference kept at temperature u(a, 0)
= kO(n — 0) while the bounding diameter is kept at zero temperature. Assuming the
surfaces of the plate to be insulated, show that the steady-state temperature distribution
of the plate is given by

8k = (ry" ! sin 2n - 1)0
U(r’e):?gﬁ(g) T @n-1°®

3. The bounding diameter of a semi-circular plate of radius a is kept at 0°C and the
temperature along the semi-circular boundary is given by

500, vvhen0<(9<E
u(a, ) = . 2
50(m — 0), when 2 <0<m

Show that the steady-state temperature distribution given by

200 (—1)”*1(r

2n-1
u(r, ) = — — ) .sin (2n — 1)6.
T = @2n-1

a
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